Advertisements
Advertisements
Question
Differentiate `sec^-1 (1/sqrt(1 - x^2))` w.r.t. `sin^-1 (2xsqrt(1 - x^2))`.
Solution
Let u = `sec^-1 1/sqrt(1 - x^2)`
x = sin θ
`\implies 1/sqrt(1 - x^2) = 1/sqrt(1 - sin^2θ)`
= `1/cosθ`
= sec θ
So u = sec–1 sec θ
= θ
= sin–1 x
`(du)/dx = 1/sqrt(1 - x^2)`
v = `sin^-1 (2xsqrt(1 - x^2))` ...(i)
Suppose that
x = sin α
v = `sin^-1 [2 sin αsqrt(1 - sin^2α)]`
= sin–1 [2 sin α . cos α]
= sin–1 [sin 2α]
= 2α
= 2 sin–1 x
`(dv)/dx = 2/sqrt(1 - x^2)` ...(ii)
From (i) and (ii)
∴ `(du)/(dv) = 1/2`
RELATED QUESTIONS
If `sec((x+y)/(x-y))=a^2. " then " (d^2y)/dx^2=........`
(a) y
(b) x
(c) y/x
(d) 0
If `y=sin^-1(3x)+sec^-1(1/(3x)), ` find dy/dx
Differentiate `tan^(-1)(sqrt(1-x^2)/x)` with respect to `cos^(-1)(2xsqrt(1-x^2))` ,when `x!=0`
Find : ` d/dx cos^−1 ((x−x^(−1))/(x+x^(−1)))`
If `y=tan^(−1) ((sqrt(1+x^2)+sqrt(1−x^2))/(sqrt(1+x^2)−sqrt(1−x^2)))` , x2≤1, then find dy/dx.
Find `dy/dx` in the following:
`y = tan^(-1) ((3x -x^3)/(1 - 3x^2)), - 1/sqrt3 < x < 1/sqrt3`
Find `dy/dx` in the following:
`y = sin^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`
Find `dy/dx` in the following:
`y = sec^(-1) (1/(2x^2 - 1)), 0 < x < 1/sqrt2`
Differentiate w.r.t. x the function:
`cot^(-1) [(sqrt(1+sinx) + sqrt(1-sinx))/(sqrt(1+sinx) - sqrt(1-sinx))]`, ` 0 < x < pi/2`
If `xsqrt(1+y) + y sqrt(1+x) = 0`, for, −1 < x <1, prove that `dy/dx = 1/(1+ x)^2`
Find the approximate value of tan−1 (1.001).
if `x = tan(1/a log y)`, prove that `(1+x^2) (d^2y)/(dx^2) + (2x + a) (dy)/(dx) = 0`
Solve `cos^(-1)(sin cos^(-1)x) = pi/2`
If y = cos (sin x), show that: `("d"^2"y")/("dx"^2) + "tan x" "dy"/"dx" + "y" "cos"^2"x" = 0`
If `log (x^2 + y^2) = 2 tan^-1 (y/x)`, show that `(dy)/(dx) = (x + y)/(x - y)`
If `"y" = (sin^-1 "x")^2, "prove that" (1 - "x"^2) (d^2"y")/(d"x"^2) - "x" (d"y")/(d"x") - 2 = 0`.
If y = `(sin^-1 x)^2,` prove that `(1-x^2) (d^2y)/dx^2 - x dy/dx -2 = 0.`
Trigonometric and inverse-trigonometric functions are differentiable in their respective domain.
`lim_("h" -> 0) (1/("h"^2 sqrt(8 + "h")) - 1/(2"h"))` is equal to ____________.
`lim_("x" -> -3) sqrt("x"^2 + 7 - 4)/("x" + 3)` is equal to ____________.
`"d"/"dx" {"cosec"^-1 ((1 + "x"^2)/(2"x"))}` is equal to ____________.
If y `= "cos"^2 ((3"x")/2) - "sin"^2 ((3"x")/2), "then" ("d"^2"y")/("dx"^2)` is ____________.
The derivative of sin x with respect to log x is ____________.
The derivative of `sin^-1 ((2x)/(1 + x^2))` with respect to `cos^-1 [(1 - x^2)/(1 + x^2)]` is equal to
Let f(x) = `cos(2tan^-1sin(cot^-1sqrt((1 - x)/x))), 0 < x < 1`. Then ______.