English

If y=tan^(−1) ((√(1+x^2)+√(1−x^2))/(√(1+x^2)−√(1−x^2))) , x2≤1, then find dy/dx. - Mathematics

Advertisements
Advertisements

Question

If `y=tan^(−1) ((sqrt(1+x^2)+sqrt(1−x^2))/(sqrt(1+x^2)−sqrt(1−x^2)))` , x21, then find dy/dx.

Solution

`y=tan^(−1) ((sqrt(1+x^2)+sqrt(1−x^2))/(sqrt(1+x^2)−sqrt(1−x^2)))`

Putting x2=cos2θ, we have

`y=tan^(−1) ((sqrt(1+cos2θ)+sqrt(1−cos2θ))/(sqrt(1+cos2θ)−sqrt(1−cos2θ)))`

`y=tan^(−1) ((sqrt(2cos^2theta)+sqrt(2sin^2θ))/(sqrt(2cos^2θ)−sqrt(2sin^2θ)))`

`y=tan^(-1)((costheta+sintheta)/(costheta-sintheta))y`

`=tan^(-1)((1+tantheta)/(1-tantheta))` (Dividing the numerator and denominator by cosθ)

`y=tan^(-1)((tan(pi/4)+tantheta)/(1-tan(pi/4)tantheta))`

`⇒y=tan^(−1)[tan(π/4+θ)]`

`⇒y=π/4+θ`

`∴ y=π/4+1/2cos^(−1)x^2              (x^2=cos2θ)`

Differentiating both sides with respect to x, we get

`dy/dx=0+1/2×(−1/sqrt(1−(x^2)^2))xx2x`

`⇒dy/dx=−x/sqrt(1−x^4)`

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Delhi Set 1

RELATED QUESTIONS

If `sec((x+y)/(x-y))=a^2. " then " (d^2y)/dx^2=........`

(a) y

(b) x

(c) y/x

(d) 0


Find : ` d/dx cos^−1 ((x−x^(−1))/(x+x^(−1)))`


if `y = sin^(-1)[(6x-4sqrt(1-4x^2))/5]` Find `dy/dx `.


Find `dy/dx` in the following:

`y = tan^(-1) ((3x -x^3)/(1 - 3x^2)), - 1/sqrt3 < x < 1/sqrt3`


Find `dy/dx` in the following:

`y = cos^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`


Find `dy/dx` in the following:

`y = sin^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`


Find `dx/dy` in the following:

`y = cos^(-1) ((2x)/(1+x^2)), -1 < x < 1`


Differentiate w.r.t. x the function:

`cot^(-1) [(sqrt(1+sinx) + sqrt(1-sinx))/(sqrt(1+sinx) - sqrt(1-sinx))]`, ` 0 < x < pi/2`


Differentiate `tan^(-1) ((1+cosx)/(sin x))` with respect to x


Solve `cos^(-1)(sin cos^(-1)x) = pi/2`


Find \[\frac{dy}{dx}\] at \[t = \frac{2\pi}{3}\] when x = 10 (t – sin t) and y = 12 (1 – cos t).


If y = (sec-1 x )2 , x > 0, show that 

`x^2 (x^2 - 1) (d^2 y)/(dx^2) + (2x^3 - x ) dy/dx -2 = 0`


If y = sin-1 x + cos-1x find  `(dy)/(dx)`.


If `"y" = (sin^-1 "x")^2, "prove that" (1 - "x"^2) (d^2"y")/(d"x"^2) - "x" (d"y")/(d"x") - 2 = 0`.


If y = `(sin^-1 x)^2,` prove that `(1-x^2) (d^2y)/dx^2 - x dy/dx -2 = 0.`


Trigonometric and inverse-trigonometric functions are differentiable in their respective domain.


`lim_("h" -> 0) (1/("h"^2 sqrt(8 + "h")) - 1/(2"h"))` is equal to ____________.


`lim_("x" -> -3) sqrt("x"^2 + 7 - 4)/("x" + 3)` is equal to ____________.


`"d"/"dx" {"cosec"^-1 ((1 + "x"^2)/(2"x"))}` is equal to ____________.


If `"y = sin"^-1 ((sqrt"x" - 1)/(sqrt"x" + 1)) + "sec"^-1 ((sqrt"x" + 1)/(sqrt"x" - 1)), "x" > 0, "then"  "dy"/"dx"` is ____________.


The derivative of sin x with respect to log x is ____________.


If y = sin–1x, then (1 – x2)y2 is equal to ______.


Let f(x) = `cos(2tan^-1sin(cot^-1sqrt((1 - x)/x))), 0 < x < 1`. Then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×