English

if y = sin^(-1)[(6x-4sqrt(1-4x^2))/5] Find dy/dx. - Mathematics

Advertisements
Advertisements

Question

if `y = sin^(-1)[(6x-4sqrt(1-4x^2))/5]` Find `dy/dx `.

Solution

Given that

`y = sin^(-1)[(6x-4sqrt(1-4x^2))/5]`

if y = sin-1x, then `dy/dx=1/sqrt(1-x^2)`

`y = sin^(-1)[6x-4sqrt(1-4x^2)/5]`

`=> y = sin^(-1)[(6x)/5-(4sqrt(1-4x^2))/5]`

`=> y =sin^(-1)[(2x xx3)/5-(4sqrt(1-(2x)^2))/5]`

`=>y = sin^(-1)[2xx3/5-4/5sqrt(1-(2x)^2)]`

`=>y = sin^(-1)[2xxsqrt(1-(4/5)^2)-4/5sqrt(1-(2x)^2)]`

We know that

`sin^(-1)p-sin^(-1)q=sin^-1(psqrt(1-q^2)-qsqrt(1-p^2)))`

Here, p=2x and  `q=4/5`

Therefore,

`y= sin^(-1)2x-sin^(-1)`

Differentiating the above function with respect to x, we have,

 `dy/dx=1/sqrt(1-(2x)^2)xx2-0`

 `=>dy/dx=2/sqrt(1-4x^2)`

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) All India Set 1 N

RELATED QUESTIONS

Differentiate `cos^-1((3cosx-2sinx)/sqrt13)` w. r. t. x.


If `sec((x+y)/(x-y))=a^2. " then " (d^2y)/dx^2=........`

(a) y

(b) x

(c) y/x

(d) 0


If `y=sin^-1(3x)+sec^-1(1/(3x)), `  find dy/dx


Differentiate `tan^(-1)(sqrt(1-x^2)/x)` with respect to `cos^(-1)(2xsqrt(1-x^2))` ,when `x!=0`


Find the derivative of the following function f(x) w.r.t. x, at x = 1 : 

`f(x)=cos^-1[sin sqrt((1+x)/2)]+x^x`


If `y=tan^(−1) ((sqrt(1+x^2)+sqrt(1−x^2))/(sqrt(1+x^2)−sqrt(1−x^2)))` , x21, then find dy/dx.


Find `dy/dx` in the following:

`y = sin^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`


Find `dy/dx` in the following:

`y = sin^(-1)(2xsqrt(1-x^2)), -1/sqrt2 < x  < 1/sqrt2`


Differentiate w.r.t. x the function:

`(sin x - cos x)^(sin x - cos x), pi/4 < x < (3pi)/4`


Find `dy/dx, if y = sin^-1 x + sin^-1 sqrt (1 - x^2) , 0<x <1`


If `xsqrt(1+y) + y  sqrt(1+x) = 0`, for, −1 < x <1, prove that `dy/dx = 1/(1+ x)^2`


Find the approximate value of tan−1 (1.001).


Differentiate `tan^(-1) ((1+cosx)/(sin x))` with respect to x


if `x = tan(1/a log y)`, prove that `(1+x^2) (d^2y)/(dx^2) + (2x + a) (dy)/(dx) = 0`


Find \[\frac{dy}{dx}\] at \[t = \frac{2\pi}{3}\] when x = 10 (t – sin t) and y = 12 (1 – cos t).


If y = cos (sin x), show that: `("d"^2"y")/("dx"^2) + "tan x" "dy"/"dx" + "y"  "cos"^2"x" = 0`


If `log (x^2 + y^2) = 2 tan^-1 (y/x)`, show that `(dy)/(dx) = (x + y)/(x - y)`


If `"y" = (sin^-1 "x")^2, "prove that" (1 - "x"^2) (d^2"y")/(d"x"^2) - "x" (d"y")/(d"x") - 2 = 0`.


If y = `(sin^-1 x)^2,` prove that `(1-x^2) (d^2y)/dx^2 - x dy/dx -2 = 0.`


If y `= "cos"^2 ((3"x")/2) - "sin"^2 ((3"x")/2), "then"  ("d"^2"y")/("dx"^2)` is ____________.


The derivative of sin x with respect to log x is ____________.


Let f(x) = `cos(2tan^-1sin(cot^-1sqrt((1 - x)/x))), 0 < x < 1`. Then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×