Advertisements
Advertisements
Question
if `y = sin^(-1)[(6x-4sqrt(1-4x^2))/5]` Find `dy/dx `.
Solution
Given that
`y = sin^(-1)[(6x-4sqrt(1-4x^2))/5]`
if y = sin-1x, then `dy/dx=1/sqrt(1-x^2)`
`y = sin^(-1)[6x-4sqrt(1-4x^2)/5]`
`=> y = sin^(-1)[(6x)/5-(4sqrt(1-4x^2))/5]`
`=> y =sin^(-1)[(2x xx3)/5-(4sqrt(1-(2x)^2))/5]`
`=>y = sin^(-1)[2xx3/5-4/5sqrt(1-(2x)^2)]`
`=>y = sin^(-1)[2xxsqrt(1-(4/5)^2)-4/5sqrt(1-(2x)^2)]`
We know that
`sin^(-1)p-sin^(-1)q=sin^-1(psqrt(1-q^2)-qsqrt(1-p^2)))`
Here, p=2x and `q=4/5`
Therefore,
`y= sin^(-1)2x-sin^(-1)`
Differentiating the above function with respect to x, we have,
`dy/dx=1/sqrt(1-(2x)^2)xx2-0`
`=>dy/dx=2/sqrt(1-4x^2)`
APPEARS IN
RELATED QUESTIONS
Differentiate `cos^-1((3cosx-2sinx)/sqrt13)` w. r. t. x.
If `sec((x+y)/(x-y))=a^2. " then " (d^2y)/dx^2=........`
(a) y
(b) x
(c) y/x
(d) 0
If `y=sin^-1(3x)+sec^-1(1/(3x)), ` find dy/dx
Differentiate `tan^(-1)(sqrt(1-x^2)/x)` with respect to `cos^(-1)(2xsqrt(1-x^2))` ,when `x!=0`
Find the derivative of the following function f(x) w.r.t. x, at x = 1 :
`f(x)=cos^-1[sin sqrt((1+x)/2)]+x^x`
If `y=tan^(−1) ((sqrt(1+x^2)+sqrt(1−x^2))/(sqrt(1+x^2)−sqrt(1−x^2)))` , x2≤1, then find dy/dx.
Find `dy/dx` in the following:
`y = sin^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`
Find `dy/dx` in the following:
`y = sin^(-1)(2xsqrt(1-x^2)), -1/sqrt2 < x < 1/sqrt2`
Differentiate w.r.t. x the function:
`(sin x - cos x)^(sin x - cos x), pi/4 < x < (3pi)/4`
Find `dy/dx, if y = sin^-1 x + sin^-1 sqrt (1 - x^2) , 0<x <1`
If `xsqrt(1+y) + y sqrt(1+x) = 0`, for, −1 < x <1, prove that `dy/dx = 1/(1+ x)^2`
Find the approximate value of tan−1 (1.001).
Differentiate `tan^(-1) ((1+cosx)/(sin x))` with respect to x
if `x = tan(1/a log y)`, prove that `(1+x^2) (d^2y)/(dx^2) + (2x + a) (dy)/(dx) = 0`
Find \[\frac{dy}{dx}\] at \[t = \frac{2\pi}{3}\] when x = 10 (t – sin t) and y = 12 (1 – cos t).
If y = cos (sin x), show that: `("d"^2"y")/("dx"^2) + "tan x" "dy"/"dx" + "y" "cos"^2"x" = 0`
If `log (x^2 + y^2) = 2 tan^-1 (y/x)`, show that `(dy)/(dx) = (x + y)/(x - y)`
If `"y" = (sin^-1 "x")^2, "prove that" (1 - "x"^2) (d^2"y")/(d"x"^2) - "x" (d"y")/(d"x") - 2 = 0`.
If y = `(sin^-1 x)^2,` prove that `(1-x^2) (d^2y)/dx^2 - x dy/dx -2 = 0.`
If y `= "cos"^2 ((3"x")/2) - "sin"^2 ((3"x")/2), "then" ("d"^2"y")/("dx"^2)` is ____________.
The derivative of sin x with respect to log x is ____________.
Let f(x) = `cos(2tan^-1sin(cot^-1sqrt((1 - x)/x))), 0 < x < 1`. Then ______.