English

Find dydx in the following: y=sin-1(2x1-x2),-12<x <12 - Mathematics

Advertisements
Advertisements

Question

Find `dy/dx` in the following:

`y = sin^(-1)(2xsqrt(1-x^2)), -1/sqrt2 < x  < 1/sqrt2`

Sum

Solution

y = `sin^-1 (2x sqrt(1 - x^2))`

Let, x = `sin  theta => theta = sin^-1 x`

`therefore y = sin^-1 (2  sin  theta sqrt(1 - sin^2 theta))`

`= sin^-1 (2  sin  theta, cos  theta)`

`= sin^-1 (sin  2  theta)             ...(because  sin  2 theta = 2  sin theta . cos theta)`

`y = 2  theta`

`=> y = 2  sin^-1 x`

`therefore dy/dx = 2 d/dx sin^-1 x`

`⇒ dy/dx= 2/sqrt(1 - x^2)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.3 [Page 169]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.3 | Q 14 | Page 169

RELATED QUESTIONS

Differentiate `cos^-1((3cosx-2sinx)/sqrt13)` w. r. t. x.


If `sec((x+y)/(x-y))=a^2. " then " (d^2y)/dx^2=........`

(a) y

(b) x

(c) y/x

(d) 0


Differentiate `tan^(-1)(sqrt(1-x^2)/x)` with respect to `cos^(-1)(2xsqrt(1-x^2))` ,when `x!=0`


Find the derivative of the following function f(x) w.r.t. x, at x = 1 : 

`f(x)=cos^-1[sin sqrt((1+x)/2)]+x^x`


Find `dy/dx` in the following:

`y = tan^(-1) ((3x -x^3)/(1 - 3x^2)), - 1/sqrt3 < x < 1/sqrt3`


Find `dy/dx` in the following:

`y = sin^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`


Find `dx/dy` in the following:

`y = cos^(-1) ((2x)/(1+x^2)), -1 < x < 1`


Find `dy/dx` in the following:

`y = sec^(-1) (1/(2x^2 - 1)), 0 < x < 1/sqrt2`


Differentiate w.r.t. x the function:

`cot^(-1) [(sqrt(1+sinx) + sqrt(1-sinx))/(sqrt(1+sinx) - sqrt(1-sinx))]`, ` 0 < x < pi/2`


Differentiate w.r.t. x the function:

`(sin x - cos x)^(sin x - cos x), pi/4 < x < (3pi)/4`


If `xsqrt(1+y) + y  sqrt(1+x) = 0`, for, −1 < x <1, prove that `dy/dx = 1/(1+ x)^2`


If `sqrt(1-x^2)  + sqrt(1- y^2)` =  a(x − y), show that dy/dx = `sqrt((1-y^2)/(1-x^2))`


Find the approximate value of tan−1 (1.001).


Differentiate `tan^(-1) ((1+cosx)/(sin x))` with respect to x


Solve `cos^(-1)(sin cos^(-1)x) = pi/2`


If y = cos (sin x), show that: `("d"^2"y")/("dx"^2) + "tan x" "dy"/"dx" + "y"  "cos"^2"x" = 0`


If `log (x^2 + y^2) = 2 tan^-1 (y/x)`, show that `(dy)/(dx) = (x + y)/(x - y)`


If `"y" = (sin^-1 "x")^2, "prove that" (1 - "x"^2) (d^2"y")/(d"x"^2) - "x" (d"y")/(d"x") - 2 = 0`.


The function f(x) = cot x is discontinuous on the set ______.


Trigonometric and inverse-trigonometric functions are differentiable in their respective domain.


`lim_("x" -> -3) sqrt("x"^2 + 7 - 4)/("x" + 3)` is equal to ____________.


`lim_("x"-> 0) ("cosec x - cot x")/"x"`  is equal to ____________.


If `"y = sin"^-1 ((sqrt"x" - 1)/(sqrt"x" + 1)) + "sec"^-1 ((sqrt"x" + 1)/(sqrt"x" - 1)), "x" > 0, "then"  "dy"/"dx"` is ____________.


If y `= "cos"^2 ((3"x")/2) - "sin"^2 ((3"x")/2), "then"  ("d"^2"y")/("dx"^2)` is ____________.


The derivative of sin x with respect to log x is ____________.


If y = sin–1x, then (1 – x2)y2 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×