English

Differentiate w.r.t. x the function: (sinx-cosx)sinx-cosx,π4<x<3π4 - Mathematics

Advertisements
Advertisements

Question

Differentiate w.r.t. x the function:

`(sin x - cos x)^(sin x - cos x), pi/4 < x < (3pi)/4`

Sum

Solution

Let, y = `(sin x- cos x)^(sin x – cos x)`

Taking logarithm on both sides,

log y = log (sin x – cosx)(sin x – cos x)

log y=(sin x – cos x)log (sin x – cosx), [∵ log mn = n log m]

On differentiating with respect to x,

`1/y dy/dx = (sin x - cos x) d/dx log (sin x - cos x) + log (sin x - cos x) d/dx (sin x - cos x)`

`= (sin x - cos x) xx 1/(sin x - cos x) d/dx (sin x - cos x) + log (sin x - cos x)(cos x + sin x)`

`= (cos x + sin x)[1 + log (sin x - cos x)]`

`therefore "dy"/"dx" = "y" (cos x + sin x)[1 + log (sin x - x)]`

`= (sin x - cos x)^(sin x - cos x) (cos x + sin x)[1 + log (sin x- cos x)], sin x > cos x`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.9 [Page 191]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.9 | Q 9 | Page 191

RELATED QUESTIONS

If `y=sin^-1(3x)+sec^-1(1/(3x)), `  find dy/dx


Find the derivative of the following function f(x) w.r.t. x, at x = 1 : 

`f(x)=cos^-1[sin sqrt((1+x)/2)]+x^x`


If `y=tan^(−1) ((sqrt(1+x^2)+sqrt(1−x^2))/(sqrt(1+x^2)−sqrt(1−x^2)))` , x21, then find dy/dx.


Find `dy/dx` in the following:

`y = tan^(-1) ((3x -x^3)/(1 - 3x^2)), - 1/sqrt3 < x < 1/sqrt3`


Find `dy/dx` in the following:

`y = cos^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`


Find `dy/dx, if y = sin^-1 x + sin^-1 sqrt (1 - x^2) , 0<x <1`


If `xsqrt(1+y) + y  sqrt(1+x) = 0`, for, −1 < x <1, prove that `dy/dx = 1/(1+ x)^2`


If `sqrt(1-x^2)  + sqrt(1- y^2)` =  a(x − y), show that dy/dx = `sqrt((1-y^2)/(1-x^2))`


Differentiate `tan^(-1) ((1+cosx)/(sin x))` with respect to x


Find \[\frac{dy}{dx}\] at \[t = \frac{2\pi}{3}\] when x = 10 (t – sin t) and y = 12 (1 – cos t).


If y = (sec-1 x )2 , x > 0, show that 

`x^2 (x^2 - 1) (d^2 y)/(dx^2) + (2x^3 - x ) dy/dx -2 = 0`


If y = cos (sin x), show that: `("d"^2"y")/("dx"^2) + "tan x" "dy"/"dx" + "y"  "cos"^2"x" = 0`


If `log (x^2 + y^2) = 2 tan^-1 (y/x)`, show that `(dy)/(dx) = (x + y)/(x - y)`


If `"y" = (sin^-1 "x")^2, "prove that" (1 - "x"^2) (d^2"y")/(d"x"^2) - "x" (d"y")/(d"x") - 2 = 0`.


If y = `(sin^-1 x)^2,` prove that `(1-x^2) (d^2y)/dx^2 - x dy/dx -2 = 0.`


The function f(x) = cot x is discontinuous on the set ______.


Trigonometric and inverse-trigonometric functions are differentiable in their respective domain.


`lim_("h" -> 0) (1/("h"^2 sqrt(8 + "h")) - 1/(2"h"))` is equal to ____________.


`lim_("x"-> 0) ("cosec x - cot x")/"x"`  is equal to ____________.


If `"y = sin"^-1 ((sqrt"x" - 1)/(sqrt"x" + 1)) + "sec"^-1 ((sqrt"x" + 1)/(sqrt"x" - 1)), "x" > 0, "then"  "dy"/"dx"` is ____________.


If y `= "cos"^2 ((3"x")/2) - "sin"^2 ((3"x")/2), "then"  ("d"^2"y")/("dx"^2)` is ____________.


The derivative of sin x with respect to log x is ____________.


If y = sin–1x, then (1 – x2)y2 is equal to ______.


Let f(x) = `cos(2tan^-1sin(cot^-1sqrt((1 - x)/x))), 0 < x < 1`. Then ______.


Differentiate `sec^-1 (1/sqrt(1 - x^2))` w.r.t. `sin^-1 (2xsqrt(1 - x^2))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×