English

If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x. - Mathematics

Advertisements
Advertisements

Question

If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.

Solution

 

(tan1x)2 + (cot−1x)2 = 5π2/8

`=>(tan^(−1)x+cos^(−1)x)^2−2tan^(−1)xcot^(−1)x=(5π^2)/8`

`⇒(π/2)^2−2tan^(−1)x(π/2−tan^(−1)x)=(5π^2)/8`

`⇒π^2/4−πtan^(−1)x+2(tan^(−1)x)^2=(5π^2)/8`

`⇒2(tan^(−1)x)^2−πtan^(−1)x+π^2/4−(5π^2)/8=0`

`⇒2(tan^(−1)x)^2−πtan^(−1)x−(5π^2+2π^2)/8=0`

`⇒2(tan^(−1)x)2−πtan^(−1)x−(3π^2)/8=0`

Solving the quadratic equation, we get

`⇒tan^(−1)x=(π±sqrt(π^2+4xx2xx(3π^2)/8))/(2xx2)`

`⇒tan^(−1)x=(π±2π)/4`

`⇒tan^(−1)x=(3π)/4  or tan^(−1)x=−π/4 `

`⇒x=tan((3π)/4)  or x=tan(−π/4)`

`⇒x=−1`

 
shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Delhi Set 1

RELATED QUESTIONS

 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

`sin^-1(sin  pi/6)`


`sin^-1(sin  (5pi)/6)`


`sin^-1(sin4)`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`cot^-1(cot  pi/3)`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Evaluate the following:

`cosec(cos^-1  3/5)`


Solve: `cos(sin^-1x)=1/6`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


`tan^-1x+2cot^-1x=(2x)/3`


`5tan^-1x+3cot^-1x=2x`


Solve the following equation for x:

tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the range of tan−1 x.


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


If tan−1 (cot θ) = 2 θ, then θ =

 


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= `51/50`


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×