Advertisements
Advertisements
Question
`5tan^-1x+3cot^-1x=2x`
Solution
`5tan^-1x+3cot^-1x=2x`
⇒ `5tan^-1x+3(pi/2-tan^-1x)=2pi` `[becausecot^-1x=pi/2-tan^-1x]`
⇒ `5tan^-1x+(3pi)/2-3tan^-1x=2pi`
⇒ `2tan^-1x=pi/2`
⇒ `tan^-1x=pi/4`
⇒ `x=tan pi/4=1`
APPEARS IN
RELATED QUESTIONS
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
`sin^-1(sin (5pi)/6)`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
Find the domain of `sec^(-1) x-tan^(-1)x`
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`
The value of sin `["cos"^-1 (7/25)]` is ____________.