English

The Value of Tan ( Cos − 1 3 5 + Tan − 1 1 4 ) (A) 19 8 (B) 8 19 (C) 19 12 (D) 3 4 - Mathematics

Advertisements
Advertisements

Question

The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 

Options

  • `19/8`

  • `8/19`

  • `19/12`

  • `3/4`

MCQ

Solution

\[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right) = \tan\left( \tan^{- 1} \frac{\sqrt{1 - \frac{9}{25}}}{\frac{3}{5}} + \tan^{- 1} \frac{1}{4} \right)\]
\[ = \tan\left( \tan^{- 1} \frac{\frac{4}{5}}{\frac{3}{5}} + \tan^{- 1} \frac{1}{4} \right)\]
\[ = \tan\left( \tan^{- 1} \frac{4}{3} + \tan^{- 1} \frac{1}{4} \right)\]
\[ = \tan\left( \tan^{- 1} \frac{\frac{4}{3} + \frac{1}{4}}{1 - \frac{1}{3}} \right)\]
\[ = \frac{\frac{16 + 3}{12}}{\frac{2}{3}}\]
\[ = \frac{19}{8}\]

Hence, the correct answer is option (a).

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.16 [Page 122]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 35 | Page 122

RELATED QUESTIONS

Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Evaluate the following:

`sin(tan^-1  24/7)`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`cosec{cot^-1(-12/5)}`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


Evaluate:

`cot(tan^-1a+cot^-1a)`


`sin^-1x=pi/6+cos^-1x`


`4sin^-1x=pi-cos^-1x`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


Evaluate the following:

`sin(1/2cos^-1  4/5)`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


Solve the following equation for x:

`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


Write the range of tan−1 x.


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\]  is equal to

 

 

If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×