Advertisements
Advertisements
Question
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
Options
`19/8`
`8/19`
`19/12`
`3/4`
Solution
\[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right) = \tan\left( \tan^{- 1} \frac{\sqrt{1 - \frac{9}{25}}}{\frac{3}{5}} + \tan^{- 1} \frac{1}{4} \right)\]
\[ = \tan\left( \tan^{- 1} \frac{\frac{4}{5}}{\frac{3}{5}} + \tan^{- 1} \frac{1}{4} \right)\]
\[ = \tan\left( \tan^{- 1} \frac{4}{3} + \tan^{- 1} \frac{1}{4} \right)\]
\[ = \tan\left( \tan^{- 1} \frac{\frac{4}{3} + \frac{1}{4}}{1 - \frac{1}{3}} \right)\]
\[ = \frac{\frac{16 + 3}{12}}{\frac{2}{3}}\]
\[ = \frac{19}{8}\]
Hence, the correct answer is option (a).
APPEARS IN
RELATED QUESTIONS
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
Evaluate the following:
`cos^-1{cos (5pi)/4}`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Evaluate the following:
`sin(tan^-1 24/7)`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`cosec{cot^-1(-12/5)}`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
Evaluate:
`cot(tan^-1a+cot^-1a)`
`sin^-1x=pi/6+cos^-1x`
`4sin^-1x=pi-cos^-1x`
Find the value of `tan^-1 (x/y)-tan^-1((x-y)/(x+y))`
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
Write the range of tan−1 x.
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`