हिंदी

The Value of Tan ( Cos − 1 3 5 + Tan − 1 1 4 ) (A) 19 8 (B) 8 19 (C) 19 12 (D) 3 4 - Mathematics

Advertisements
Advertisements

प्रश्न

The value of tan(cos135+tan114)

 

विकल्प

  • 198

  • 819

  • 1912

  • 34

MCQ

उत्तर

tan(cos135+tan114)=tan(tan1192535+tan114)
=tan(tan14535+tan114)
=tan(tan143+tan114)
=tan(tan143+14113)
=16+31223
=198

Hence, the correct answer is option (a).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 35 | पृष्ठ १२२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


Evaluate the following:

cos-1{cos 13π6}


Evaluate the following:

cos-1(cos3)


Evaluate the following:

tan-1(tan π3)


Evaluate the following:

tan-1(tan1)


Evaluate the following:

sec-1(sec 5π4)


Evaluate the following:

sec-1(sec 7π3)


Evaluate the following:

cosec-1(cosec 13π6)


Write the following in the simplest form:

sin{2tan-11-x1+x}


Evaluate the following:

cot(cos-1 35)


Evaluate:

cosec{cot-1(-125)}


Evaluate: 

cot(sin-1 34+sec-1 43)


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1831


Evaluate: cos(sin-1 35+sin-1 513)


sin-1 6365=sin-1 513+cos-1 35


Evaluate the following:

tan{2tan-1 15-π4}


Evaluate the following:

sin(12cos-1 45)


tan-1 14+tan-1 29=12cos-1 32=12sin-1(45)


2sin-1 35-tan-1 1731=π4


If sin-1 2a1+a2+sin-1 2b1+b2=2tan-1x, Prove that  x=a+b1-ab.


Find the value of the following:

cos(sec-1x+cosec-1x), | x | ≥ 1


Write the value of sin−1

(sin(600°)).

 

 


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


If tan−1 x + tan−1 y = π4,  then write the value of x + y + xy.


Write the value of cos−1 (cos 6).


Write the value of cos−1 (cos5π4)


Write the value of sin1(13)cos1(13)


Write the value of sin1(sin3π5)


If cos(sin125+cos1x)=0, find the value of x.

 

The value of tan {cos1152sin1417} is

 


sin[cot1{tan(cos1x)}]  is equal to

 

 

If tan−1 3 + tan−1 x = tan−1 8, then x =


The value of cos1(cos5π3)+sin1(sin5π3) is

 


sin {2cos1(35)}  is equal to

 


The value of  sin(2(tan10.75)) is equal to

 


Write the value of cos1(12)+2sin1(12) .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.