हिंदी

Evaluate: `Cos(Sin^-1 3/5+Sin^-1 5/13)` - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`

उत्तर

`cos(sin^-1  3/5+sin^-1  5/13)=cos{sin^-1(3/5sqrt(1-(5/13)^2)+5/13sqrt(1-(3/5)^2))}`

`=cos{sin^-1(3/5xx12/13+5/13xx4/5)}`

`=cos{sin^-1(36/65+4/13)}`

`=cos{sin^-1(56/65)}`

`=cos{cos^-1sqrt(1-(56/65)^2)}`          `[because sin^-1x=cos^-1sqrt(1-x^2)]`

`=cos{cos^-1  33/65}`

`=33/65`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.12 [पृष्ठ ८९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.12 | Q 1 | पृष्ठ ८९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

Find the domain of definition of `f(x)=cos^-1(x^2-4)`


`sin^-1(sin  (17pi)/8)`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Evaluate the following:

`sin(sec^-1  17/8)`


Evaluate the following:

`cosec(cos^-1  3/5)`


Evaluate the following:

`sec(sin^-1  12/13)`


Evaluate:

`sec{cot^-1(-5/12)}`


Evaluate:

`tan{cos^-1(-7/25)}`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


Evaluate:

`cot(tan^-1a+cot^-1a)`


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Sum the following series:

`tan^-1  1/3+tan^-1  2/9+tan^-1  4/33+...+tan^-1  (2^(n-1))/(1+2^(2n-1))`


`tan^-1  2/3=1/2tan^-1  12/5`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Show that `2tan^-1x+sin^-1  (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of cos−1 (cos 1540°).


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


If tan−1 (cot θ) = 2 θ, then θ =

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×