Advertisements
Advertisements
प्रश्न
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
उत्तर
`cos(sin^-1 3/5+sin^-1 5/13)=cos{sin^-1(3/5sqrt(1-(5/13)^2)+5/13sqrt(1-(3/5)^2))}`
`=cos{sin^-1(3/5xx12/13+5/13xx4/5)}`
`=cos{sin^-1(36/65+4/13)}`
`=cos{sin^-1(56/65)}`
`=cos{cos^-1sqrt(1-(56/65)^2)}` `[because sin^-1x=cos^-1sqrt(1-x^2)]`
`=cos{cos^-1 33/65}`
`=33/65`
APPEARS IN
संबंधित प्रश्न
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
`sin^-1(sin (17pi)/8)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Evaluate the following:
`sin(sec^-1 17/8)`
Evaluate the following:
`cosec(cos^-1 3/5)`
Evaluate the following:
`sec(sin^-1 12/13)`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`tan{cos^-1(-7/25)}`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
Evaluate:
`cot(tan^-1a+cot^-1a)`
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Find the value of `tan^-1 (x/y)-tan^-1((x-y)/(x+y))`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
`tan^-1 2/3=1/2tan^-1 12/5`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`
Write the value of cos−1 (cos 1540°).
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\]
then α − β =
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
If tan−1 (cot θ) = 2 θ, then θ =
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .