हिंदी

Evaluate: Sin{Cos-1(-35)+Cot-1(-512)} - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: sin{cos-1(-35)+cot-1(-512)}

उत्तर

sin{cos-1(-35)+cot-1(-512)}=sin{π-cos-1(35)+π-cot-1(512)}

=sin{2π-[cos-1(35)+cot-1(512)]}

=-sin{cos-1(35)+cot-1(512)}

=-sin{sin-1[1-(35)2]+sin-1[1251+(125)2]}

=-sin(sin-1 45+sin-1 1213)

=-sin{sin-1[45×1-(1213)2=1213×1-(45)2]}

=-sin[sin-1(2065+3665)]

=-sin[sin-1(5665)]

=-5665

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.09 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.09 | Q 3 | पृष्ठ ५९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Write the value of tan(2tan-1(15))


Find the value of the following: tan(12)[sin-1(2x1+x2)+cos-1(1-y21+y2)],|x|<1,y>0andxy<1


Prove that

tan-1[1+x-1-x1+x+1-x]=π4-12cos-1x,-12x1


Find the domain of definition of f(x)=cos-1(x2-4)


​Find the principal values of the following:

cos-1(-12)


sin-1(sin 5π6)


sin-1(sin 17π8)


sin-1(sin3)


Evaluate the following:

tan-1(tan π3)


Evaluate the following:

cosec-1(cosec π4)


Evaluate the following:

cosec-1(cosec 13π6)


Evaluate the following:

cot-1(cot 19π6)


Write the following in the simplest form:

tan-1(xa+a2-x2),-a<x<a


Prove the following result

tan(cos-1 45+tan-1 23)=176


Prove the following result-

tan-1 6316=sin-1 513+cos-1 35


Evaluate:

tan{cos-1(-725)}


Evaluate: 

cot(sin-1 34+sec-1 43)


If (sin-1x)2+(cos-1x)2=17π236,  Find x


tan-1 17+2tan-1 13=π4


Prove that

tan-1(1-x22x)+cot-1(1-x22x)=π2


Solve the following equation for x:

tan-1 14+2tan-1 15+tan-1 16+tan-1 1x=π4


Solve the following equation for x:

tan-1(2x1-x2)+cot-1(1-x22x)=2π3,x>0


If x < 0, then write the value of cos−1 (1-x21+x2) in terms of tan−1 x.


Write the value of tan1 x + tan−1 (1x)  for x < 0.


Write the value of sin1 (sin 1550°).


Write the value of cos(12cos135)


Write the value of cos−1 (cos 6).


Write the principal value of tan11+cos1(12)


Write the principal value of tan-13+cot-13


If tan1(1+x21x21+x2+1x2)  = α, then x2 =




2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


If α = tan1(tan5π4) and β=tan1(tan2π3) , then

 

 If cos1x3+cos1y2=θ2, then 4x212xycosθ2+9y2=


If tan−1 3 + tan−1 x = tan−1 8, then x =


The value of sin1(cos33π5) is 

 


In a ∆ ABC, if C is a right angle, then
tan1(ab+c)+tan1(bc+a)=

 

 


Write the value of cos1(12)+2sin1(12) .


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= 5150


Find the value of sin-1(cos(33π5)).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.