हिंदी

Find the Domain of Definition of `F(X)=Cos^-1(X^2-4)` - Mathematics

Advertisements
Advertisements

प्रश्न

Find the domain of definition of `f(x)=cos^-1(x^2-4)`

उत्तर

For `cos^-1 (x^2 - 4)` to be defined

`-1 ≤ x^2 - 4 ≤ 1`

⇒ `3 ≤ x^2 ≤ 5`

⇒ `x in [- sqrt5, - sqrt3 ] cup [sqrt3, sqrt5 ] `

Hence, the domain of  `f(x)   is   [-sqrt5, -sqrt3] cup [sqrt3, sqrt5]`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.02 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.02 | Q 1 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,`  find the value of x2 + y2 + z2 


Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


Find the domain of `f(x)=cos^-1x+cosx.`


`sin^-1(sin12)`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Write the following in the simplest form:

`tan^-1{x+sqrt(1+x^2)},x in R `


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


Evaluate:

`cot(tan^-1a+cot^-1a)`


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Show that `2tan^-1x+sin^-1  (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


If sin−1 − cos−1 x = `pi/6` , then x = 


The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


The value of sin `["cos"^-1 (7/25)]` is ____________.


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×