Advertisements
Advertisements
प्रश्न
Evaluate:
`cot(tan^-1a+cot^-1a)`
उत्तर
`cot(tan^-1a+cot^-1a)`
`=cot(pi/2)` `[thereforetan^-1x+cot^-1x=pi/2]`
= 0
APPEARS IN
संबंधित प्रश्न
Find the domain of `f(x)=cos^-1x+cosx.`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`tan^-1(tan (9pi)/4)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Evaluate the following:
`sin(sin^-1 7/25)`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Evaluate:
`cos(tan^-1 3/4)`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
If \[\cos^{- 1} x > \sin^{- 1} x\], then
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
Find the domain of `sec^(-1)(3x-1)`.
The period of the function f(x) = tan3x is ____________.
Find the value of `sin^-1(cos((33π)/5))`.