हिंदी

It Tan − 1 X + 1 X − 1 + Tan − 1 X − 1 X = Tan − 1 (−7), Then the Value of X is (A) 0 (B) −2 (C) 1 (D) 2 - Mathematics

Advertisements
Advertisements

प्रश्न

It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 

विकल्प

  • 0

  • −2

  • 1

  • 2

MCQ

उत्तर

(d) 2

We know that 
\[\tan^{- 1} x + \tan^{- 1} y = \tan^{- 1} \left( \frac{x + y}{1 - xy} \right)\]
\[\therefore \tan^{- 1} \left( \frac{x + 1}{x - 1} \right) + \tan^{- 1} \left( \frac{x - 1}{x} \right) = \tan^{- 1} \left( - 7 \right)\]
\[ \Rightarrow \tan^{- 1} \left( \frac{\frac{x + 1}{x - 1} + \frac{x - 1}{x}}{1 - \frac{x + 1}{x - 1} \times \frac{x - 1}{x}} \right) = \tan^{- 1} \left( - 7 \right)\]
\[ \Rightarrow \tan^{- 1} \left( \frac{\frac{x^2 + x + x^2 - 2x + 1}{x\left( x - 1 \right)}}{\frac{x^2 - x - x^2 + 1}{x\left( x - 1 \right)}} \right) = \tan^{- 1} \left( - 7 \right)\]
\[ \Rightarrow \tan^{- 1} \left( \frac{2 x^2 - x + 1}{- x + 1} \right) = \tan^{- 1} \left( - 7 \right)\]
So, we get
\[\frac{2 x^2 - x + 1}{- x + 1} = - 7\]
\[ \Rightarrow 2 x^2 - x + 1 = 7x - 7\]
\[ \Rightarrow 2 x^2 - 8x + 8 = 0\]
\[ \Rightarrow x^2 - 4x + 4 = 0\]
\[ \Rightarrow \left( x - 2 \right)^2 = 0\]
\[ \Rightarrow x = 2\]


shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 25 | पृष्ठ १२१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Write the value of `tan(2tan^(-1)(1/5))`


Solve the equation for x:sin1x+sin1(1x)=cos1x


If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Evaluate the following:

`cot^-1(cot  pi/3)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Evaluate the following:

`cos(tan^-1  24/7)`


Solve: `cos(sin^-1x)=1/6`


Evaluate:

`sec{cot^-1(-5/12)}`


Evaluate:

`tan{cos^-1(-7/25)}`


Evaluate:

`cosec{cot^-1(-12/5)}`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


Write the value of sin (cot−1 x).


Write the range of tan−1 x.


Write the value of sin1 (sin 1550°).


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


If tan−1 3 + tan−1 x = tan−1 8, then x =


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= `51/50`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×