हिंदी

If Cos − 1 X > Sin − 1 X , Then (A) 1 √ 2 < X ≤ 1 (B) 0 ≤ X < 1 √ 2 (C) − 1 ≤ X < 1 √ 2 (D) X > 0 - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\cos^{- 1} x > \sin^{- 1} x\], then

विकल्प

  • \[\frac{1}{\sqrt{2}} < x \leq 1\]

  •  \[0 \leq x < \frac{1}{\sqrt{2}}\]

  •  \[- 1 \leq x < \frac{1}{\sqrt{2}}\]

  •  x > 0

MCQ

उत्तर

\[\cos^{- 1} x > \sin^{- 1} x\]
\[ \Rightarrow \cos^{- 1} x > \frac{\pi}{2} - \cos^{- 1} x\]
\[ \Rightarrow 2 \cos^{- 1} x > \frac{\pi}{2}\]
\[ \Rightarrow \cos^{- 1} x > \frac{\pi}{4}\]
\[ \Rightarrow x > \cos\frac{\pi}{4}\]
\[ \Rightarrow x > \frac{1}{\sqrt{2}}\]

We know that the maximum value of cosine fuction is 1.

\[\therefore \frac{1}{\sqrt{2}} < x \leq 1\]

Hence, the correct answer is option(a).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 26 | पृष्ठ १२१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Write the value of `tan(2tan^(-1)(1/5))`


Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


Solve the equation for x:sin1x+sin1(1x)=cos1x


Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

Find the domain of `f(x)=cos^-1x+cosx.`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`cosec^-1(cosec  (13pi)/6)`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Evaluate:

`cos(tan^-1  3/4)`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


`sin(sin^-1  1/5+cos^-1x)=1`


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


If tan−1 (cot θ) = 2 θ, then θ =

 


The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


Find the domain of `sec^(-1)(3x-1)`.


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×