Advertisements
Advertisements
प्रश्न
If \[\cos^{- 1} x > \sin^{- 1} x\], then
विकल्प
\[\frac{1}{\sqrt{2}} < x \leq 1\]
\[0 \leq x < \frac{1}{\sqrt{2}}\]
\[- 1 \leq x < \frac{1}{\sqrt{2}}\]
x > 0
उत्तर
\[\cos^{- 1} x > \sin^{- 1} x\]
\[ \Rightarrow \cos^{- 1} x > \frac{\pi}{2} - \cos^{- 1} x\]
\[ \Rightarrow 2 \cos^{- 1} x > \frac{\pi}{2}\]
\[ \Rightarrow \cos^{- 1} x > \frac{\pi}{4}\]
\[ \Rightarrow x > \cos\frac{\pi}{4}\]
\[ \Rightarrow x > \frac{1}{\sqrt{2}}\]
We know that the maximum value of cosine fuction is 1.
\[\therefore \frac{1}{\sqrt{2}} < x \leq 1\]
Hence, the correct answer is option(a).
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
Find the domain of `f(x)=cos^-1x+cosx.`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
Evaluate:
`cos(tan^-1 3/4)`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
`sin(sin^-1 1/5+cos^-1x)=1`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
If tan−1 (cot θ) = 2 θ, then θ =
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
Find the domain of `sec^(-1)(3x-1)`.
Find the value of `sin^-1(cos((33π)/5))`.