Advertisements
Advertisements
प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
उत्तर
We have to find the value of `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))]`
We know that: `sin^(-1)(2x)/(1+x^2)=2tan^(-1)x for |x| ≤ 1 …… (1)`
`cos^(-1)(1-y^2)/(1+y^2)=2tan^(-1)y for y > 0 …… (2)`
`Now sin^(-1)((2x)/(1+x^2)) + cos^(-1)((1-y^2)/(1+y^2))=2tan^(-1)x+2tan^(-1)y`
`tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))]=tan(1/2)(2tan^(-1)x+2tan^(-1)y)=tan(tan^(-1)x+tan^(-1)y)`
Since, ` tan^(−1)x + tan^(−1)y = tan^(−1)((x+y)/(1-xy)) for xy < 1`
`therefore tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))]=tan(tan^(−1)((x+y)/(1-xy)))=(x+y)/(1-xy)`
APPEARS IN
संबंधित प्रश्न
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Evaluate the following:
`cos(tan^-1 24/7)`
Evaluate:
`cos(tan^-1 3/4)`
Evaluate:
`cot(tan^-1a+cot^-1a)`
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
`4sin^-1x=pi-cos^-1x`
Find the value of `tan^-1 (x/y)-tan^-1((x-y)/(x+y))`
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]