Advertisements
Advertisements
प्रश्न
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
उत्तर
We know that
\[\tan^{- 1} x + \tan^{- 1} y = \tan^{- 1} \left( \frac{x + y}{1 - xy} \right)\]
Now,
\[\tan^{- 1} x + \tan^{- 1} y = \frac{\pi}{4}\]
\[ \Rightarrow \tan^{- 1} \left( \frac{x + y}{1 - xy} \right) = \frac{\pi}{4}\]
\[ \Rightarrow \frac{x + y}{1 - xy} = \tan\frac{\pi}{4}\]
\[ \Rightarrow \frac{x + y}{1 - xy} = 1 \]
\[ \Rightarrow x + y = 1 - xy\]
\[ \Rightarrow x + y + xy = 1\]
∴ \[x + y + xy = 1\]
APPEARS IN
संबंधित प्रश्न
`sin^-1(sin4)`
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`sin(tan^-1 24/7)`
Evaluate the following:
`sec(sin^-1 12/13)`
Evaluate the following:
`cot(cos^-1 3/5)`
Solve: `cos(sin^-1x)=1/6`
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
`tan^-1 2/3=1/2tan^-1 12/5`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`
Find the value of `sin^-1(cos((33π)/5))`.