English

If Tan−1 X + Tan−1 Y = `Pi/4`, Then Write the Value Of X + Y + Xy. - Mathematics

Advertisements
Advertisements

Question

If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.

Solution

We know that 

\[\tan^{- 1} x + \tan^{- 1} y = \tan^{- 1} \left( \frac{x + y}{1 - xy} \right)\]
Now,
\[\tan^{- 1} x + \tan^{- 1} y = \frac{\pi}{4}\]
\[ \Rightarrow \tan^{- 1} \left( \frac{x + y}{1 - xy} \right) = \frac{\pi}{4}\]
\[ \Rightarrow \frac{x + y}{1 - xy} = \tan\frac{\pi}{4}\]
\[ \Rightarrow \frac{x + y}{1 - xy} = 1 \]
\[ \Rightarrow x + y = 1 - xy\]
\[ \Rightarrow x + y + xy = 1\]
∴ \[x + y + xy = 1\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.15 [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 23 | Page 117

RELATED QUESTIONS

 

Prove that :

`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`

 

Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


`sin^-1(sin  pi/6)`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Evaluate the following:

`cosec^-1(cosec  (13pi)/6)`


Evaluate the following:

`cosec(cos^-1  3/5)`


Evaluate the following:

`tan(cos^-1  8/17)`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`tan{cos^-1(-7/25)}`


Evaluate:

`cosec{cot^-1(-12/5)}`


Evaluate:

`cot(tan^-1a+cot^-1a)`


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


`4sin^-1x=pi-cos^-1x`


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the value of cos−1 (cos 1540°).


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


Write the principal value of `sin^-1(-1/2)`


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


tanx is periodic with period ____________.


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×