Advertisements
Advertisements
Question
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
Solution
`cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
⇒ `cos^-1 a/x+cos^-1 1/a=cos^-1 1/b+cos^-1 b/x`
⇒ `cos^-1 [a/x xx1/a-sqrt(1-(a/x)^2)sqrt(1-(1/a)^2)]=cos^-1[b/x xx1/b-sqrt(1-(b/x)^2)sqrt(1-(1/b)^2)]` `[because cos^-1x+cos^-1y=cos^-1(xy-sqrt(1-x^2)sqrt(1-y^2))]`
⇒ `cos^-1[1/x-sqrt(1-a^2/x^2)xxsqrt(1-1/a^2)]=cos^-1[1/x-sqrt(1-b^2/x^2)xxsqrt(1-1/b^2)]`
⇒ `1/x-sqrt(1-a^2/x^2)xxsqrt(1-1/a^2)=1/x-sqrt(1-b^2/x^2)xxsqrt(1-1/b^2`
⇒ `(1-a^2/x^2)(1-1/a^2)=(1-b^2/x^2)(1-1/b^2)`
⇒ `1-1/a^2-a^2/x^2+1/x^2=1-1/b^2-b^2/x^2+1/x^2`
⇒ `(a^2-b^2)/x^2=1/b^2-1/a^2`
⇒ `(a^2-b^2)/x^2=(a^2-b^2)/(a^2b^2)`
⇒ `x^2=a^2b^2`
⇒ `x=ab`
APPEARS IN
RELATED QUESTIONS
Write the value of `tan(2tan^(-1)(1/5))`
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
`sin^-1{(sin - (17pi)/8)}`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cosec^-1{cosec (-(9pi)/4)}`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate the following:
`cos(tan^-1 24/7)`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`cot{sec^-1(-13/5)}`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
`tan^-1 2/3=1/2tan^-1 12/5`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Solve the following equation for x:
`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
If tan−1 3 + tan−1 x = tan−1 8, then x =
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
The period of the function f(x) = tan3x is ____________.