English

Solve the Equation `Cos^-1 A/X-cos^-1 B/X=Cos^-1 1/B-cos^-1 1/A` - Mathematics

Advertisements
Advertisements

Question

Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`

Solution

`cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`

⇒ `cos^-1  a/x+cos^-1  1/a=cos^-1  1/b+cos^-1  b/x`

⇒  `cos^-1 [a/x  xx1/a-sqrt(1-(a/x)^2)sqrt(1-(1/a)^2)]=cos^-1[b/x  xx1/b-sqrt(1-(b/x)^2)sqrt(1-(1/b)^2)]`     `[because cos^-1x+cos^-1y=cos^-1(xy-sqrt(1-x^2)sqrt(1-y^2))]`

⇒  `cos^-1[1/x-sqrt(1-a^2/x^2)xxsqrt(1-1/a^2)]=cos^-1[1/x-sqrt(1-b^2/x^2)xxsqrt(1-1/b^2)]`

⇒  `1/x-sqrt(1-a^2/x^2)xxsqrt(1-1/a^2)=1/x-sqrt(1-b^2/x^2)xxsqrt(1-1/b^2`

⇒  `(1-a^2/x^2)(1-1/a^2)=(1-b^2/x^2)(1-1/b^2)`

⇒  `1-1/a^2-a^2/x^2+1/x^2=1-1/b^2-b^2/x^2+1/x^2`

⇒  `(a^2-b^2)/x^2=1/b^2-1/a^2`

⇒  `(a^2-b^2)/x^2=(a^2-b^2)/(a^2b^2)`

⇒  `x^2=a^2b^2`

⇒  `x=ab`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.13 [Page 92]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.13 | Q 2 | Page 92

RELATED QUESTIONS

Write the value of `tan(2tan^(-1)(1/5))`


 

Prove that :

`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`

 

If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


`sin^-1{(sin - (17pi)/8)}`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Evaluate the following:

`sin(cos^-1  5/13)`


Evaluate the following:

`cos(tan^-1  24/7)`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Evaluate:

`sec{cot^-1(-5/12)}`


Evaluate:

`cot{sec^-1(-13/5)}`


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Sum the following series:

`tan^-1  1/3+tan^-1  2/9+tan^-1  4/33+...+tan^-1  (2^(n-1))/(1+2^(2n-1))`


`tan^-1  2/3=1/2tan^-1  12/5`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


If tan−1 3 + tan−1 x = tan−1 8, then x =


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


The period of the function f(x) = tan3x is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×