Advertisements
Advertisements
Question
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Solution
Let x = tan y
Then,
`cos^-1((1-x^2)/(1+x^2))=cos^-1((1-tan^2y)/(1+tan^2y))`
`=cos^-1(cos2y)` `[because (1-tan^2x)/(1+tan^2)=cos2x]`
= 2y ...(1)
The value of x is negative.
So, let x = -a where a > 0.
`-a = tan y`
`=>y=tan^-1(-a)`
Now,
`cos^-1((1-x^2)/(1+x^2))=2y` [Using (1)]
`=2tan^-1(-a)`
`=-2tan^-1x` `[becausex=-a]`
APPEARS IN
RELATED QUESTIONS
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
`sin^-1(sin4)`
`sin^-1(sin12)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Evaluate the following:
`cosec(cos^-1 3/5)`
Evaluate:
`cot(tan^-1a+cot^-1a)`
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Find the value of `tan^-1 (x/y)-tan^-1((x-y)/(x+y))`
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Write the value of cos−1 (cos 6).
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Write the value of \[\tan^{- 1} \left( \frac{1}{x} \right)\] for x < 0 in terms of `cot^-1x`
If sin−1 x − cos−1 x = `pi/6` , then x =
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
If tan−1 (cot θ) = 2 θ, then θ =
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`
The period of the function f(x) = tan3x is ____________.