English

If X < 0, Then Write the Value of Cos−1 `((1-x^2)/(1+X^2))` In Terms of Tan−1 X. - Mathematics

Advertisements
Advertisements

Question

If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.

Solution

Let x = tan y

Then,

`cos^-1((1-x^2)/(1+x^2))=cos^-1((1-tan^2y)/(1+tan^2y))`

`=cos^-1(cos2y)`    `[because (1-tan^2x)/(1+tan^2)=cos2x]`

= 2y                 ...(1)

The value of x is negative.
So, let x = -a where a > 0.

`-a = tan y`

`=>y=tan^-1(-a)`

Now,

`cos^-1((1-x^2)/(1+x^2))=2y`         [Using (1)]

`=2tan^-1(-a)`

`=-2tan^-1x`            `[becausex=-a]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.15 [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 5 | Page 117

RELATED QUESTIONS

Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,`  find the value of x2 + y2 + z2 


Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


`sin^-1(sin4)`


`sin^-1(sin12)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`cosec^-1(cosec  (11pi)/6)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`tan^-1{x+sqrt(1+x^2)},x in R `


Evaluate the following:

`cosec(cos^-1  3/5)`


Evaluate:

`cot(tan^-1a+cot^-1a)`


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


Prove the following result:

`tan^-1  1/4+tan^-1  2/9=sin^-1  1/sqrt5`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Write the value of cos−1 (cos 6).


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


If sin−1 − cos−1 x = `pi/6` , then x = 


If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


If tan−1 (cot θ) = 2 θ, then θ =

 


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


The period of the function f(x) = tan3x is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×