Advertisements
Advertisements
Question
If tan−1 (cot θ) = 2 θ, then θ =
Options
`+-pi/3`
`+-pi/4`
`+-pi/6`
none of these
Solution
(c) `+-pi/6`
\[\text{We have}, \]
\[ \tan^{- 1} \left( cot\theta \right) = 2\theta\]
\[ \Rightarrow \tan2\theta = cot\theta\]
\[ \Rightarrow \frac{2\tan\theta}{1 - \tan^2 \theta} = \frac{1}{\tan\theta}\]
\[ \Rightarrow 2 \tan^2 \theta = 1 - \tan^2 \theta\]
\[ \Rightarrow 3 \tan^2 \theta = 1\]
\[ \Rightarrow \tan^2 \theta = \frac{1}{3}\]
\[ \Rightarrow \tan\theta = \pm \frac{1}{\sqrt{3}}\]
\[ \therefore \theta = \pm \frac{\pi}{6}\]
APPEARS IN
RELATED QUESTIONS
Write the value of `tan(2tan^(-1)(1/5))`
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
`sin^-1(sin (17pi)/8)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Evaluate the following:
`cot(cos^-1 3/5)`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Evaluate:
`cot{sec^-1(-13/5)}`
Evaluate:
`cosec{cot^-1(-12/5)}`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
`sin(sin^-1 1/5+cos^-1x)=1`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the principal value of `sin^-1(-1/2)`
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
Write the value of \[\tan^{- 1} \left( \frac{1}{x} \right)\] for x < 0 in terms of `cot^-1x`
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
Find the domain of `sec^(-1)(3x-1)`.
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`