English

If Cos − 1 X a + Cos − 1 Y B = α , T H E N X 2 a 2 − 2 X Y a B Cos α + Y 2 B 2 = (A) Sin2 α (B) Cos2 α (C) Tan2 α (D) Cot2 α - Mathematics

Advertisements
Advertisements

Question

If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]

Options

  • sin2 α

  • cos2 α

  • tan2 α

  • cot2 α

MCQ

Solution

(a) sin2 α
We know that
\[\cos^{- 1} x + \cos^{- 1} y = \cos^{- 1} \left( xy - \sqrt{1 - x^2}\sqrt{1 - y^2} \right)\]
\[\therefore \cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha\]
\[ \Rightarrow \cos^{- 1} \left( \frac{x}{a}\frac{y}{b} - \sqrt{1 - \frac{x^2}{a^2}}\sqrt{1 - \frac{y^2}{b^2}} \right) = \alpha\]
\[ \Rightarrow \frac{xy}{ab} - \sqrt{1 - \frac{x^2}{a^2}}\sqrt{1 - \frac{y^2}{b^2}} = \cos\alpha\]
\[ \Rightarrow \sqrt{1 - \frac{x^2}{a^2}}\sqrt{1 - \frac{y^2}{b^2}} = \frac{xy}{ab} - \cos\alpha\]
\[ \Rightarrow \left( 1 - \frac{x^2}{a^2} \right)\left( 1 - \frac{y^2}{b^2} \right) = \frac{x^2}{a^2}\frac{y^2}{b^2} + \cos^2 \alpha - \frac{2xy}{ab}\cos\alpha \left[\text{ Squaring both the sides }\right]\]
\[ \Rightarrow 1 - \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{x^2}{a^2}\frac{y^2}{b^2} = \frac{x^2}{a^2}\frac{y^2}{b^2} + \cos^2 \alpha - \frac{2xy}{ab}\cos\alpha\]
\[ \Rightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{2xy}{ab}\cos\alpha = 1 - \cos^2 \alpha = \sin^2 \alpha\]
\[\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.16 [Page 120]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 4 | Page 120

RELATED QUESTIONS

Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


Find the domain of `f(x)=cos^-1x+cosx.`


`sin^-1(sin  (5pi)/6)`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Evaluate:

`cos(tan^-1  3/4)`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


`sin(sin^-1  1/5+cos^-1x)=1`


`sin^-1x=pi/6+cos^-1x`


`tan^-1x+2cot^-1x=(2x)/3`


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×