Advertisements
Advertisements
Question
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
Options
sin2 α
cos2 α
tan2 α
cot2 α
Solution
(a) sin2 α
We know that
\[\cos^{- 1} x + \cos^{- 1} y = \cos^{- 1} \left( xy - \sqrt{1 - x^2}\sqrt{1 - y^2} \right)\]
\[\therefore \cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha\]
\[ \Rightarrow \cos^{- 1} \left( \frac{x}{a}\frac{y}{b} - \sqrt{1 - \frac{x^2}{a^2}}\sqrt{1 - \frac{y^2}{b^2}} \right) = \alpha\]
\[ \Rightarrow \frac{xy}{ab} - \sqrt{1 - \frac{x^2}{a^2}}\sqrt{1 - \frac{y^2}{b^2}} = \cos\alpha\]
\[ \Rightarrow \sqrt{1 - \frac{x^2}{a^2}}\sqrt{1 - \frac{y^2}{b^2}} = \frac{xy}{ab} - \cos\alpha\]
\[ \Rightarrow \left( 1 - \frac{x^2}{a^2} \right)\left( 1 - \frac{y^2}{b^2} \right) = \frac{x^2}{a^2}\frac{y^2}{b^2} + \cos^2 \alpha - \frac{2xy}{ab}\cos\alpha \left[\text{ Squaring both the sides }\right]\]
\[ \Rightarrow 1 - \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{x^2}{a^2}\frac{y^2}{b^2} = \frac{x^2}{a^2}\frac{y^2}{b^2} + \cos^2 \alpha - \frac{2xy}{ab}\cos\alpha\]
\[ \Rightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{2xy}{ab}\cos\alpha = 1 - \cos^2 \alpha = \sin^2 \alpha\]
\[\]
APPEARS IN
RELATED QUESTIONS
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
Find the domain of `f(x)=cos^-1x+cosx.`
`sin^-1(sin (5pi)/6)`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Evaluate:
`cos(tan^-1 3/4)`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
`sin(sin^-1 1/5+cos^-1x)=1`
`sin^-1x=pi/6+cos^-1x`
`tan^-1x+2cot^-1x=(2x)/3`
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`