English

Evaluate: `Cos(Tan^-1 3/4)` - Mathematics

Advertisements
Advertisements

Question

Evaluate:

`cos(tan^-1  3/4)`

Solution

We have

`cos(tan^-1  3/4)=cos[1/2cos^-1((1-(3/4)^2)/(1+(3/4)^2))]`   `[therefore 2tan^-1x+cos^-1((1-x^2)/(1+x^2))]`

`=cos[1/2cos^-1(7/25)]`

Let

`y=cos^-1(7/25)`

`=>cosy=7/25`

Now,

`cos[1/2cos^-1(7/25)]=cos[1/2y]`

`=sqrt((cosy+1)/2)`    `[thereforecos2x=2cos^2x-1]`

`=sqrt((7/25+1)/2)`

`=sqrt(32/50)`

`=4/5`

`therefore cos[tan^-1(3/4)]=4/5`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.09 [Page 58]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.09 | Q 2.3 | Page 58

RELATED QUESTIONS

Write the value of `tan(2tan^(-1)(1/5))`


If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


Prove that

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`


Find the domain of `f(x)=cos^-1x+cosx.`


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


`sin^-1(sin  pi/6)`


`sin^-1(sin  (5pi)/6)`


`sin^-1(sin  (17pi)/8)`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`tan^-1(tan  (9pi)/4)`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`sin(tan^-1  24/7)`


Evaluate the following:

`sin(sec^-1  17/8)`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


`tan^-1  2/3=1/2tan^-1  12/5`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


Solve the following equation for x:

`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×