English

If α = Tan − 1 ( √ 3 X 2 Y − X ) , β = Tan − 1 ( 2 X − Y √ 3 Y ) , Then α − β = (A) π 6 (B) π 3 (C) π 2 (D) − π 3 - Mathematics

Advertisements
Advertisements

Question

If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =

Options

  • `pi/6`

  • `pi/3`

  • `pi/2`

  • `-pi/3`

MCQ

Solution

(a) `pi/6`

We have
α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right)\]
\[\text{ Now }, \alpha - \beta = \tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right) - \tan^{- 1} \frac{2x - y}{\sqrt{3}y}\]
\[ = \tan^{- 1} \left( \frac{\frac{\sqrt{3}x}{2y - x} - \frac{2x - y}{\sqrt{3}y}}{1 + \frac{\sqrt{3}x}{2y - x} \times \frac{2x - y}{\sqrt{3}y}} \right)\]
\[ = \tan^{- 1} \left( \frac{\frac{3xy - 4xy + 2 y^2 + 2 x^2 - xy}{\sqrt{3}y\left( 2y - x \right)}}{\frac{\sqrt{3}y\left( 2y - x \right) + \sqrt{3}x\left( 2x - y \right)}{\sqrt{3}y\left( 2y - x \right)}} \right)\]
\[ = \tan^{- 1} \left( \frac{3xy - 4xy + 2 y^2 + 2 x^2 - xy}{2\sqrt{3} y^2 - \sqrt{3}xy + 2\sqrt{3} x^2 - \sqrt{3}xy} \right)\]
\[ = \tan^{- 1} \left( \frac{2 y^2 + 2 x^2 - 2xy}{2\sqrt{3} y^2 + 2\sqrt{3} x^2 - 2\sqrt{3}xy} \right)\]
\[ = \tan^{- 1} \left( \frac{1}{\sqrt{3}} \right) = \frac{\pi}{6}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.16 [Page 120]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 14 | Page 120

RELATED QUESTIONS

Write the value of `tan(2tan^(-1)(1/5))`


`sin^-1(sin  (7pi)/6)`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cosec^-1(cosec  (11pi)/6)`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Evaluate the following:

`sin(tan^-1  24/7)`


Evaluate the following:

`sec(sin^-1  12/13)`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate:

`cot{sec^-1(-13/5)}`


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


`tan^-1x+2cot^-1x=(2x)/3`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


What is the principal value of `sin^-1(-sqrt3/2)?`


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]


If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


If sin−1 − cos−1 x = `pi/6` , then x = 


If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


Find the domain of `sec^(-1) x-tan^(-1)x`


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×