English

Evaluate the Following: `Tan^-1(Tan (7pi)/6)` - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

`tan^-1(tan  (7pi)/6)`

Solution

We know that

`tan^-1(tantheta)=theta,   -pi/2<theta<pi/2`

We have 

`tan^-1(tan  (7pi)/6)=tan^-1[tan(pi+pi/6)]`

`=tan^-1[tan(pi/6)]`

`=pi/6`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.07 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.07 | Q 3.3 | Page 42

RELATED QUESTIONS

Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`cosec^-1(cosec  (3pi)/4)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Evaluate the following:

`sin(cos^-1  5/13)`


Evaluate the following:

`sin(tan^-1  24/7)`


Solve: `cos(sin^-1x)=1/6`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


Evaluate:

`cot(tan^-1a+cot^-1a)`


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


`sin^-1x=pi/6+cos^-1x`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Sum the following series:

`tan^-1  1/3+tan^-1  2/9+tan^-1  4/33+...+tan^-1  (2^(n-1))/(1+2^(2n-1))`


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


Evaluate the following:

`sin(1/2cos^-1  4/5)`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


Write the value of sin1 (sin 1550°).


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×