हिंदी

Evaluate the Following: `Tan^-1(Tan (7pi)/6)` - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`tan^-1(tan  (7pi)/6)`

उत्तर

We know that

`tan^-1(tantheta)=theta,   -pi/2<theta<pi/2`

We have 

`tan^-1(tan  (7pi)/6)=tan^-1[tan(pi+pi/6)]`

`=tan^-1[tan(pi/6)]`

`=pi/6`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.07 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.07 | Q 3.3 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


`sin^-1(sin  pi/6)`


`sin^-1(sin  (7pi)/6)`


`sin^-1(sin2)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`cosec(cos^-1  3/5)`


Evaluate:

`cosec{cot^-1(-12/5)}`


Evaluate:

`cos(tan^-1  3/4)`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


`sin^-1x=pi/6+cos^-1x`


Prove the following result:

`tan^-1  1/4+tan^-1  2/9=sin^-1  1/sqrt5`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Show that `2tan^-1x+sin^-1  (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


Write the range of tan−1 x.


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.


Find the domain of `sec^(-1)(3x-1)`.


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= `51/50`


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×