Advertisements
Advertisements
प्रश्न
Evaluate the following:
`tan^-1(tan (9pi)/4)`
उत्तर
We know that
`tan^-1(tantheta)=theta, -pi/2<theta<pi/2`
We have
`tan^-1(tan (9pi)/4)=tan^-1[tan(2pi+pi/4)]`
`=tan^-1[tan(pi/4)]`
`=pi/4`
APPEARS IN
संबंधित प्रश्न
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
`sin^-1(sin pi/6)`
`sin^-1(sin4)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Evaluate the following:
`sin(sec^-1 17/8)`
Evaluate the following:
`cosec(cos^-1 3/5)`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Solve: `cos(sin^-1x)=1/6`
Evaluate:
`cosec{cot^-1(-12/5)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
`5tan^-1x+3cot^-1x=2x`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of sin−1 (sin 1550°).
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
If tan−1 (cot θ) = 2 θ, then θ =
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
Find the domain of `sec^(-1)(3x-1)`.
The period of the function f(x) = tan3x is ____________.
The value of sin `["cos"^-1 (7/25)]` is ____________.