Advertisements
Advertisements
प्रश्न
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
उत्तर
We know that
\[\sin^{- 1} x + \cos^{- 1} x = \frac{\pi}{2}\]
\[\therefore 4 \sin^{- 1} x + \cos^{- 1} x = \pi\]
\[ \Rightarrow 4 \sin^{- 1} x + \frac{\pi}{2} - \sin^{- 1} x = \pi \left[ \because \sin^{- 1} x + \cos^{- 1} x = \frac{\pi}{2} \right]\]
\[ \Rightarrow 3 \sin^{- 1} x = \frac{\pi}{2}\]
\[ \Rightarrow \sin^{- 1} x = \frac{\pi}{6}\]
\[ \Rightarrow x = \sin\frac{\pi}{6}\]
\[ \Rightarrow x = \frac{1}{2}\]
∴ \[x = \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1(sin (5pi)/6)`
`sin^-1(sin (17pi)/8)`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`tan^-1(tan4)`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Evaluate the following:
`sin(tan^-1 24/7)`
Evaluate the following:
`cosec(cos^-1 3/5)`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`cosec{cot^-1(-12/5)}`
Evaluate:
`cos(tan^-1 3/4)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
`4sin^-1x=pi-cos^-1x`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Find the value of `tan^-1 (x/y)-tan^-1((x-y)/(x+y))`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
If tan−1 3 + tan−1 x = tan−1 8, then x =
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
The period of the function f(x) = tan3x is ____________.
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.