हिंदी

Solve the Following Equation For X: Cot−1x − Cot−1(X + 2) =`Pi/12`, X > 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0

उत्तर

⇒ `cot^-1(x)-cot^-1(x+2)=pi/12`

⇒ `tan^-1(1/x)+cot^-1(1/(x+2))=pi/12`     `[because cot^-1x=tan^-1 1/x]`

⇒ `tan^-1((1/x-1/(x+2))/(1+1/(x(x+2))))=pi/12`

⇒ `tan^-1((2/(x(x+2)))/((x^2+2x+1)/(x(x+2))))=pi/12`

⇒ `tan^-1(2/(x^2+2x+1))=pi/12`

⇒ `(2/(x^2+2x+1))=tan  pi/12`

⇒ `(2/(x^2+2x+1))=tan(pi/3-pi/4)`

⇒ `(2/(x^2+2x+1))=(tan  pi/3-tan  pi/4)/(1+tan  pi/3xxtan  pi/4`

⇒ `(2/(x^2+2x+1))=(sqrt3-1)/(sqrt3+1)`

⇒ `(2/(x^2+2x+1))=(sqrt3-1)/(sqrt3+1)xx(sqrt3+1)/(sqrt3+1)`

⇒ `(2/(x^2+2x+1))=2/(sqrt3+1)^2`

⇒ `1/(x+1)^2=1/(sqrt3+1)^2`

⇒ `x+1=sqrt3+1`

⇒ `x=sqrt3`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.11 [पृष्ठ ८२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.11 | Q 3.05 | पृष्ठ ८२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


If sin [cot−1 (x+1)] = cos(tan1x), then find x.


If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


`sin^-1(sin  pi/6)`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Evaluate the following:

`sin(sec^-1  17/8)`


Solve: `cos(sin^-1x)=1/6`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`cosec{cot^-1(-12/5)}`


`sin(sin^-1  1/5+cos^-1x)=1`


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of cos−1 (cos 1540°).


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\]  is equal to

 

 

If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


If tan−1 (cot θ) = 2 θ, then θ =

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


The period of the function f(x) = tan3x is ____________.


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×