Advertisements
Advertisements
प्रश्न
Find the value of `sin^-1(cos((33π)/5))`.
उत्तर
`sin^-1(cos((33π)/5))`
= `sin^-1 cos(6π + (3π)/5)`
= `sin^-1 cos((3π)/5)`
= `sin^-1 sin(π/2 - (3π)/5)`
= `π/2 - (3π)/5`
= `-π/10`.
APPEARS IN
संबंधित प्रश्न
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
Find the domain of `f(x)=cos^-1x+cosx.`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
`sin(sin^-1 1/5+cos^-1x)=1`
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`
Write the range of tan−1 x.
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
The value of sin `["cos"^-1 (7/25)]` is ____________.