हिंदी

Solve the Equation `Cos^-1 A/X-cos^-1 B/X=Cos^-1 1/B-cos^-1 1/A` - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`

उत्तर

`cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`

⇒ `cos^-1  a/x+cos^-1  1/a=cos^-1  1/b+cos^-1  b/x`

⇒  `cos^-1 [a/x  xx1/a-sqrt(1-(a/x)^2)sqrt(1-(1/a)^2)]=cos^-1[b/x  xx1/b-sqrt(1-(b/x)^2)sqrt(1-(1/b)^2)]`     `[because cos^-1x+cos^-1y=cos^-1(xy-sqrt(1-x^2)sqrt(1-y^2))]`

⇒  `cos^-1[1/x-sqrt(1-a^2/x^2)xxsqrt(1-1/a^2)]=cos^-1[1/x-sqrt(1-b^2/x^2)xxsqrt(1-1/b^2)]`

⇒  `1/x-sqrt(1-a^2/x^2)xxsqrt(1-1/a^2)=1/x-sqrt(1-b^2/x^2)xxsqrt(1-1/b^2`

⇒  `(1-a^2/x^2)(1-1/a^2)=(1-b^2/x^2)(1-1/b^2)`

⇒  `1-1/a^2-a^2/x^2+1/x^2=1-1/b^2-b^2/x^2+1/x^2`

⇒  `(a^2-b^2)/x^2=1/b^2-1/a^2`

⇒  `(a^2-b^2)/x^2=(a^2-b^2)/(a^2b^2)`

⇒  `x^2=a^2b^2`

⇒  `x=ab`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.13 [पृष्ठ ९२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.13 | Q 2 | पृष्ठ ९२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


If sin [cot−1 (x+1)] = cos(tan1x), then find x.


If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


Find the domain of definition of `f(x)=cos^-1(x^2-4)`


Find the domain of `f(x)=cos^-1x+cosx.`


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


`sin^-1(sin  (5pi)/6)`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`sec^-1(sec  (7pi)/3)`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


Evaluate:

`cos(tan^-1  3/4)`


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


`sin(sin^-1  1/5+cos^-1x)=1`


`sin^-1x=pi/6+cos^-1x`


`tan^-1x+2cot^-1x=(2x)/3`


Prove the following result:

`tan^-1  1/4+tan^-1  2/9=sin^-1  1/sqrt5`


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\]  is equal to

 

 

If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×