Advertisements
Advertisements
प्रश्न
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
उत्तर
`cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
⇒ `cos^-1 a/x+cos^-1 1/a=cos^-1 1/b+cos^-1 b/x`
⇒ `cos^-1 [a/x xx1/a-sqrt(1-(a/x)^2)sqrt(1-(1/a)^2)]=cos^-1[b/x xx1/b-sqrt(1-(b/x)^2)sqrt(1-(1/b)^2)]` `[because cos^-1x+cos^-1y=cos^-1(xy-sqrt(1-x^2)sqrt(1-y^2))]`
⇒ `cos^-1[1/x-sqrt(1-a^2/x^2)xxsqrt(1-1/a^2)]=cos^-1[1/x-sqrt(1-b^2/x^2)xxsqrt(1-1/b^2)]`
⇒ `1/x-sqrt(1-a^2/x^2)xxsqrt(1-1/a^2)=1/x-sqrt(1-b^2/x^2)xxsqrt(1-1/b^2`
⇒ `(1-a^2/x^2)(1-1/a^2)=(1-b^2/x^2)(1-1/b^2)`
⇒ `1-1/a^2-a^2/x^2+1/x^2=1-1/b^2-b^2/x^2+1/x^2`
⇒ `(a^2-b^2)/x^2=1/b^2-1/a^2`
⇒ `(a^2-b^2)/x^2=(a^2-b^2)/(a^2b^2)`
⇒ `x^2=a^2b^2`
⇒ `x=ab`
APPEARS IN
संबंधित प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
Find the domain of `f(x)=cos^-1x+cosx.`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
`sin^-1(sin (5pi)/6)`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Evaluate:
`cos(tan^-1 3/4)`
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
`sin(sin^-1 1/5+cos^-1x)=1`
`sin^-1x=pi/6+cos^-1x`
`tan^-1x+2cot^-1x=(2x)/3`
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
Find the value of `sin^-1(cos((33π)/5))`.