हिंदी

​Find the Principal Values of the Following: `Cos^-1(Sin (4pi)/3)` - Mathematics

Advertisements
Advertisements

प्रश्न

​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`

उत्तर

Let `cos^-1(sin   (4pi)/3) = y`

Then,

`cosy = sin  (4pi)/3`

We know that the range of the principal value branch is [0, π].

Thus, 

`cosy=sin  (4pi)/3=-sqrt3/2=cos    (5pi)/6`

`=>y=(5pi)/6in[0,pi]`

Hence, the principal value of `cos^-1(sin  (4pi)/3)`  is  `(5pi)/6`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.02 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.02 | Q 4.3 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

`sin^-1(sin2)`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cosec(cos^-1  3/5)`


Evaluate the following:

`cos(tan^-1  24/7)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Evaluate:

`sec{cot^-1(-5/12)}`


Evaluate:

`cosec{cot^-1(-12/5)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


`sin(sin^-1  1/5+cos^-1x)=1`


Solve the following equation for x:

tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of sin (cot−1 x).


Write the value of cos−1 (cos 1540°).


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]


Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


Find the domain of `sec^(-1) x-tan^(-1)x`


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×