Advertisements
Advertisements
प्रश्न
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
उत्तर
We know that
cosec-1 (cosec θ) = θ, [-π/2,0) ∪ (0,π/2]
`\text(cosec)^-1(\text{cosec}pi/4)=pi/4`
APPEARS IN
संबंधित प्रश्न
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
Find the domain of `f(x)=cos^-1x+cosx.`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`cosec^-1(cosec (3pi)/4)`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate the following:
`sin(tan^-1 24/7)`
Evaluate the following:
`cosec(cos^-1 3/5)`
`4sin^-1x=pi-cos^-1x`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\]
then α − β =
If tan−1 3 + tan−1 x = tan−1 8, then x =
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`
The value of sin `["cos"^-1 (7/25)]` is ____________.