Advertisements
Advertisements
प्रश्न
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
उत्तर
We know that
sec-1 (sec θ) = θ, [0, π/2) ∪ (π/2, π]
We have
`sec^-1{sec (-(7pi)/3)}=sec^-1{sec((7pi)/3)}`
`=sec^-1[sec(2pi+pi/3)]`
`=sec^-1[sec(pi/3)]`
`=pi/3`
APPEARS IN
संबंधित प्रश्न
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x
Find the domain of `f(x)=cos^-1x+cosx.`
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`tan^-1(tan (9pi)/4)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Evaluate the following:
`cosec(cos^-1 3/5)`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`cot(tan^-1a+cot^-1a)`
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Write the range of tan−1 x.
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
If \[\cos^{- 1} x > \sin^{- 1} x\], then
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
Find the domain of `sec^(-1) x-tan^(-1)x`
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.
The value of sin `["cos"^-1 (7/25)]` is ____________.