Advertisements
Advertisements
प्रश्न
Evaluate the following:
`sec^-1(sec (13pi)/4)`
उत्तर
We know that
sec-1 (sec θ) = θ, [0, π/2) ∪ (π/2, π]
We have
`sec^-1(sec (13pi)/4)=sec^-1[sec(4pi-(3pi)/4)]`
`=sec^-1[sec((3pi)/4)]`
`=(3pi)/4`
APPEARS IN
संबंधित प्रश्न
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`tan^-1(tan (9pi)/4)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
Write the value of sin (cot−1 x).
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Write the value of sin−1 (sin 1550°).
Write the value of cos−1 (cos 6).
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
The set of values of `\text(cosec)^-1(sqrt3/2)`
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
If tan−1 (cot θ) = 2 θ, then θ =
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.