हिंदी

Write the Value of \[\Cos^{- 1} \Left( \Frac{1}{2} \Right) + 2 \Sin^{- 1} \Left( \Frac{1}{2} \Right)\]. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].

उत्तर

We have

\[\cos^{- 1} \frac{1}{2} + 2 \sin^{- 1} \frac{1}{2}\]
\[ = \cos^{- 1} \left( \cos\frac{\pi}{3} \right) + 2 \sin^{- 1} \left( \sin\frac{\pi}{6} \right)\]

`[because"The range of sine is" [-pi/2,pi/2];  pi/6 in[-pi/2,pi/2] "and the range of cosine is"  [0,pi] ;  pi/3 in  [0,pi]]`
\[ = \frac{\pi}{3} + 2\left( \frac{\pi}{6} \right)\]
\[ = \frac{\pi}{3} + \frac{\pi}{3}\]
\[ = \frac{2\pi}{3}\]

∴ \[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right) = \frac{2\pi}{3}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.15 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 11 | पृष्ठ ११७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


Find the domain of definition of `f(x)=cos^-1(x^2-4)`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


Evaluate the following:

`sec(sin^-1  12/13)`


Evaluate:

`cos{sin^-1(-7/25)}`


`5tan^-1x+3cot^-1x=2x`


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


Write the range of tan−1 x.


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


If tan−1 (cot θ) = 2 θ, then θ =

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×