हिंदी

Solve the following equation for x: tan−1(x + 1) + tan−1(x − 1) = tan−1831 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`

योग

उत्तर

Given: tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`

Take LHS

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`

We know that, Formula

tan−1 x + tan-1 y = tan-1 `(x + y)/(1 - xy)`

Thus,

`=> tan^-1  ((x + 1)+(x - 1))/(1 -(x + 1)xx(x - 1)) = tan^-1  8/31`

`=> tan^-1  (2x)/(1-(x^2 - 1)) = tan^-1  8/31`

`=> tan^-1  (2x)/(1 - x^2 + 1) = tan^-1  8/31`

`=> (2x)/(1 - x^2 + 1) = 8/31`

⇒ 62x = 8 − 8x2 + 8

⇒ 4x2 + 62x − 16 = 0

⇒ 6x2 + 31x − 8 = 0

⇒ 4x(x + 8) − 1(x + 8) = 0

⇒ (4x − 1)(x + 8) = 0

⇒ 6x + 1 = 0 or x − 1 = 0

⇒ x = `1/4` or x = −8

Since,

x = `1/4` ∈ `(-sqrt2, sqrt2)`

So, 

x = `1/4` is the root of the given equation

Therefore, 

x = `1/4`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.11 [पृष्ठ ८२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.11 | Q 3.02 | पृष्ठ ८२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`sec^-1(sec  (7pi)/3)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`cosec^-1(cosec  (11pi)/6)`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Solve: `cos(sin^-1x)=1/6`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


`sin^-1x=pi/6+cos^-1x`


`5tan^-1x+3cot^-1x=2x`


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×