Advertisements
Advertisements
प्रश्न
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
उत्तर
Given: tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Take LHS
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
We know that, Formula
tan−1 x + tan-1 y = tan-1 `(x + y)/(1 - xy)`
Thus,
`=> tan^-1 ((x + 1)+(x - 1))/(1 -(x + 1)xx(x - 1)) = tan^-1 8/31`
`=> tan^-1 (2x)/(1-(x^2 - 1)) = tan^-1 8/31`
`=> tan^-1 (2x)/(1 - x^2 + 1) = tan^-1 8/31`
`=> (2x)/(1 - x^2 + 1) = 8/31`
⇒ 62x = 8 − 8x2 + 8
⇒ 4x2 + 62x − 16 = 0
⇒ 6x2 + 31x − 8 = 0
⇒ 4x(x + 8) − 1(x + 8) = 0
⇒ (4x − 1)(x + 8) = 0
⇒ 6x + 1 = 0 or x − 1 = 0
⇒ x = `1/4` or x = −8
Since,
x = `1/4` ∈ `(-sqrt2, sqrt2)`
So,
x = `1/4` is the root of the given equation
Therefore,
x = `1/4`
APPEARS IN
संबंधित प्रश्न
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Solve: `cos(sin^-1x)=1/6`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
`sin^-1x=pi/6+cos^-1x`
`5tan^-1x+3cot^-1x=2x`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`