हिंदी

Evaluate the Following: `Cosec^-1(Cosec (11pi)/6)` - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`cosec^-1(cosec  (11pi)/6)`

उत्तर

We know that

cosec-1 (cosec θ) = θ,    [-π/2,0) ∪ (0,π/2]

`cosec^-1(cosec  (11pi)/6)=cosec^-1[cosec(2pi-pi/6)]`

`=cosec^-1(cosec - pi/6)`

`=-pi/6`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.07 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.07 | Q 5.4 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

`sin^-1(sin  (17pi)/8)`


`sin^-1{(sin - (17pi)/8)}`


`sin^-1(sin4)`


`sin^-1(sin2)`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Evaluate the following:

`cosec^-1(cosec  (13pi)/6)`


Evaluate the following:

`sin(sec^-1  17/8)`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate the following:

`cos(tan^-1  24/7)`


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


`sin(sin^-1  1/5+cos^-1x)=1`


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


If \[\cos^{- 1} x > \sin^{- 1} x\], then


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


Find the domain of `sec^(-1)(3x-1)`.


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×