Advertisements
Advertisements
प्रश्न
Evaluate the following:
`sin(sec^-1 17/8)`
उत्तर
`=sin(sec^-1 17/8)=sin(cos^-1 8/17)`
`=sin[sin^-1sqrt(1-(8/17)^2)]` `[thereforecos^-1x=sin^-1sqrt(1-x^2)]`
`=sin[sin^-1(sqrt(1-64/289))]`
`=sin[sin^-1(sqrt(225/289))]`
`=sin[sin^-1 15/17]`
`=15/17`
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
`sin^-1{(sin - (17pi)/8)}`
`sin^-1(sin3)`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Evaluate the following:
`sec(sin^-1 12/13)`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Evaluate:
`cot{sec^-1(-13/5)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
`tan^-1x+2cot^-1x=(2x)/3`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
The set of values of `\text(cosec)^-1(sqrt3/2)`
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`