हिंदी

Solve the Following Equation For X: `Tan^-1 X/2+Tan^-1 X/3=Pi/4, 0<X<Sqrt6` - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`

उत्तर

We know

`tan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))`

∴ `tan^-1  x/2+tan^-1  x/3=pi/4,`

⇒ `tan^-1((x/2+x/3)/(1-x/2xxx/3))=pi/4`

⇒ `tan^-1(((5x)/6)/((6-x^2)/6))=pi/4`

⇒ `(5x)/(6-x^2)=tan  pi/4`

⇒ `(5x)/(6-x^2)=1`

⇒ `5x=6-x^2`

⇒ `x^2+5x-6=0`

⇒ `(x-1) (x+6)=0`

⇒ x = 1        `[because0<x<sqrt6]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.11 [पृष्ठ ८२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.11 | Q 3.07 | पृष्ठ ८२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the equation for x:sin1x+sin1(1x)=cos1x


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


`sin^-1(sin  (5pi)/6)`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Evaluate the following:

`sec(sin^-1  12/13)`


Solve: `cos(sin^-1x)=1/6`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


`sin^-1x=pi/6+cos^-1x`


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


Evaluate the following:

`sin(1/2cos^-1  4/5)`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


If sin−1 − cos−1 x = `pi/6` , then x = 


\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= `51/50`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×