Advertisements
Advertisements
प्रश्न
`4tan^-1 1/5-tan^-1 1/239=pi/4`
उत्तर
LHS = `4tan^-1 1/5-tan^-1 1/239`
`=2tan^-1{(2xx1/5)/(1-(1/5)^2)}-tan^-1 1/239` `[because2tan^-1x=tan^-1{(2x)/(1-x^2)}]`
`=2tan^-1{(2/5)/(24/25)}-tan^-1 1/239`
`=2tan^-1 5/12-tan^-1 1/239`
`=tan^-1{(2xx5/12)/(1-(5/12)^2)}-tan^-1 1/239` `[because2tan^-1x=tan^-1{(2x)/(1-x^2)}]`
`=tan^-1{(5/6)/(119/144)}-tan^-1 1/239`
`=tan^-1 120/119-tan^-1 1/239`
`=tan^-1((120/119-17/239)/(1+120/119xx1/239))` `[becausetan^-1x-tan^-1y=tan^-1((x-y)/(1+xy))]`
`=tan^-1 1=pi/4=`RHS
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1(sin (17pi)/8)`
`sin^-1(sin12)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Evaluate the following:
`cosec^-1{cosec (-(9pi)/4)}`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Evaluate the following:
`sin(sin^-1 7/25)`
Evaluate the following:
`tan(cos^-1 8/17)`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
If \[\cos^{- 1} x > \sin^{- 1} x\], then
If tan−1 (cot θ) = 2 θ, then θ =
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`
Find the value of `sin^-1(cos((33π)/5))`.