हिंदी

`4tan^-1 1/5-tan^-1 1/239=Pi/4` - Mathematics

Advertisements
Advertisements

प्रश्न

`4tan^-1  1/5-tan^-1  1/239=pi/4`

उत्तर

LHS = `4tan^-1  1/5-tan^-1  1/239`

`=2tan^-1{(2xx1/5)/(1-(1/5)^2)}-tan^-1  1/239`     `[because2tan^-1x=tan^-1{(2x)/(1-x^2)}]`

`=2tan^-1{(2/5)/(24/25)}-tan^-1  1/239`

`=2tan^-1  5/12-tan^-1  1/239`

`=tan^-1{(2xx5/12)/(1-(5/12)^2)}-tan^-1  1/239`    `[because2tan^-1x=tan^-1{(2x)/(1-x^2)}]`

`=tan^-1{(5/6)/(119/144)}-tan^-1  1/239`

`=tan^-1  120/119-tan^-1  1/239`

`=tan^-1((120/119-17/239)/(1+120/119xx1/239))`      `[becausetan^-1x-tan^-1y=tan^-1((x-y)/(1+xy))]`

`=tan^-1 1=pi/4=`RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 2.1 | पृष्ठ ११५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Write the value of `tan(2tan^(-1)(1/5))`


If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


Find the domain of definition of `f(x)=cos^-1(x^2-4)`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1(sin  (17pi)/8)`


`sin^-1(sin12)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`cosec^-1(cosec  (11pi)/6)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`tan(cos^-1  8/17)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


If tan−1 (cot θ) = 2 θ, then θ =

 


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= `51/50`


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×