हिंदी

Solve the Following Equation For X: `Tan^-1((X-2)/(X-4))+Tan^-1((X+2)/(X+4))=Pi/4` - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`

उत्तर

We know
`tan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))`

∴ `tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`

⇒ `tan^-1(((x-2)/(x-4)+(x+2)/(x+4))/(1-(x-2)/(x-4)xx(x+2)/(x+4)))=pi/4`

⇒ `tan^-1(((x^2+2x-8+x^2-2x-8)/((x-4)(x+4)))/((x^2-16-x^2+4)/((x-4)(x+4))))=pi/4`

⇒ `(2x^2-16)/-12=tan  pi/4`

⇒ `(2x^2-16)/-12=1`

⇒ 2x2 - 16 = -12

⇒ 2x2 = 4

⇒ x2 = 2

⇒ `x=+-sqrt2`

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.11 [पृष्ठ ८२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.11 | Q 3.08 | पृष्ठ ८२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


`sin^-1(sin3)`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`sec^-1(sec  (7pi)/3)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Evaluate:

`cos(tan^-1  3/4)`


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


Evaluate the following:

`sin(1/2cos^-1  4/5)`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Show that `2tan^-1x+sin^-1  (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the value of sin1 (sin 1550°).


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×