Advertisements
Advertisements
प्रश्न
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
उत्तर
\[\tan^{- 1} \left( \frac{1}{1 + 1 \times 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 \times 3} \right) + . . . + \tan^{- 1} \left[ \frac{1}{1 + n \times \left( n + 1 \right)} \right] = \tan^{- 1} \theta\]
\[ \Rightarrow \tan^{- 1} \left( \frac{2 - 1}{1 + 1 \times 2} \right) + \tan^{- 1} \left( \frac{3 - 2}{1 + 2 \times 3} \right) + . . . + \tan^{- 1} \left[ \frac{\left( n + 1 \right) - n}{1 + n \times \left( n + 1 \right)} \right] = \tan^{- 1} \theta\]
\[ \Rightarrow \tan^{- 1} \left( 2 \right) - \tan^{- 1} \left( 1 \right) + \tan^{- 1} \left( 3 \right) - \tan^{- 1} \left( 2 \right) + . . . + \tan^{- 1} \left( n + 1 \right) - \tan^{- 1} \left( n \right) = \tan^{- 1} \theta\]
\[ \Rightarrow \tan^{- 1} \left( n + 1 \right) - \tan^{- 1} \left( 1 \right) = \tan^{- 1} \theta\]
\[ \Rightarrow \tan^{- 1} \left[ \frac{\left( n + 1 \right) - 1}{1 + \left( n + 1 \right) \times 1} \right] = \tan^{- 1} \theta\]
\[ \Rightarrow \tan^{- 1} \left( \frac{n}{n + 2} \right) = \tan^{- 1} \theta\]
\[ \Rightarrow \theta = \frac{n}{n + 2}\]
Thus, the value of θ is \[\frac{n}{n + 2}\] .
APPEARS IN
संबंधित प्रश्न
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
`sin^-1(sin (7pi)/6)`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Evaluate:
`cot{sec^-1(-13/5)}`
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
Solve the following equation for x:
tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\]
then α − β =
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.