हिंदी

`Sin^-1(Sin (7pi)/6)` - Mathematics

Advertisements
Advertisements

प्रश्न

`sin^-1(sin  (7pi)/6)`

उत्तर

We know

`sin(sin^-1theta)=theta if - pi/2<=theta<=pi/2`

We have

`sin^-1(sin  (7pi)/6)=sin^-1{sin(pi+pi/6)}`

`=sin^-1(sin-pi/6)`

`=-pi/6`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.07 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.07 | Q 1.02 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate the following:

`sec^-1(sec  (7pi)/3)`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


Evaluate the following:

`sin(tan^-1  24/7)`


Evaluate the following:

`cosec(cos^-1  3/5)`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Solve: `cos(sin^-1x)=1/6`


Evaluate:

`cosec{cot^-1(-12/5)}`


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value of cos−1 (cos 6).


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


Write the principal value of `sin^-1(-1/2)`


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×