Advertisements
Advertisements
प्रश्न
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
उत्तर
\[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}\]
\[ = \cot^{- 1} \left\{ \frac{\sqrt{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^2} + \sqrt{\left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)^2}}{\sqrt{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^2} - \sqrt{\left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)^2}} \right\}\]
\[\left[ \because \left( \cos\frac{x}{2} \pm \sin\frac{x}{2} \right)^2 = \cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} \pm 2\sin\frac{x}{2}\cos\frac{x}{2} = 1 \pm \sin x \right]\]
\[ = \cot^{- 1} \left\{ \frac{\left| \cos\frac{x}{2} + \sin\frac{x}{2} \right| + \left| \cos\frac{x}{2} - \sin\frac{x}{2} \right|}{\left| \cos\frac{x}{2} + \sin\frac{x}{2} \right| - \left| \cos\frac{x}{2} - \sin\frac{x}{2} \right|} \right\} \]
\[ = \cot^{- 1} \left\{ \frac{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right) + \left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right) - \left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)} \right\} \left[ \because 0 < \frac{x}{2} < \frac{\pi}{4} \therefore \cos\frac{x}{2} > \sin\frac{x}{2} \right]\]
\[ = \cot^{- 1} \left( \cot\frac{x}{2} \right)\]
\[ = \frac{x}{2}\]
APPEARS IN
संबंधित प्रश्न
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
Find the domain of `f(x)=cos^-1x+cosx.`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1(sin (17pi)/8)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Evaluate the following:
`sin(tan^-1 24/7)`
Evaluate the following:
`sec(sin^-1 12/13)`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
`tan^-1x+2cot^-1x=(2x)/3`
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
The set of values of `\text(cosec)^-1(sqrt3/2)`
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`