हिंदी

Prove that : Cot − 1 √ 1 + Sin X + √ 1 − Sin X √ 1 + Sin X − √ 1 − Sin X = X 2 , 0 < X < π 2 . - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .

उत्तर

\[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}\]

\[ = \cot^{- 1} \left\{ \frac{\sqrt{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^2} + \sqrt{\left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)^2}}{\sqrt{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^2} - \sqrt{\left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)^2}} \right\}\]

\[\left[ \because \left( \cos\frac{x}{2} \pm \sin\frac{x}{2} \right)^2 = \cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} \pm 2\sin\frac{x}{2}\cos\frac{x}{2} = 1 \pm \sin x \right]\]

\[ = \cot^{- 1} \left\{ \frac{\left| \cos\frac{x}{2} + \sin\frac{x}{2} \right| + \left| \cos\frac{x}{2} - \sin\frac{x}{2} \right|}{\left| \cos\frac{x}{2} + \sin\frac{x}{2} \right| - \left| \cos\frac{x}{2} - \sin\frac{x}{2} \right|} \right\} \]

\[ = \cot^{- 1} \left\{ \frac{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right) + \left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right) - \left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)} \right\} \left[ \because 0 < \frac{x}{2} < \frac{\pi}{4} \therefore \cos\frac{x}{2} > \sin\frac{x}{2} \right]\]

\[ = \cot^{- 1} \left( \cot\frac{x}{2} \right)\]

\[ = \frac{x}{2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) Foreign Set 2

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


If sin [cot−1 (x+1)] = cos(tan1x), then find x.


If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,`  find the value of x2 + y2 + z2 


Find the domain of `f(x)=cos^-1x+cosx.`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1(sin  (17pi)/8)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`cosec^-1(cosec  (13pi)/6)`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Evaluate the following:

`sin(tan^-1  24/7)`


Evaluate the following:

`sec(sin^-1  12/13)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


`tan^-1x+2cot^-1x=(2x)/3`


Prove the following result:

`tan^-1  1/4+tan^-1  2/9=sin^-1  1/sqrt5`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


The set of values of `\text(cosec)^-1(sqrt3/2)`


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= `51/50`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×