Advertisements
Advertisements
प्रश्न
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
उत्तर
\[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\]
\[ \Rightarrow \cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = \cos\left( \frac{\pi}{2} \right)\]
\[ \Rightarrow \sin^{- 1} \frac{2}{5} + \cos^{- 1} x = \frac{\pi}{2}\]
\[ \therefore x = \frac{2}{5} \left[ \because \sin^{- 1} y + \cos^{- 1} y = \frac{\pi}{2} \right]\]
\[\]
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
`sin^-1(sin pi/6)`
`sin^-1(sin (5pi)/6)`
`sin^-1(sin (13pi)/7)`
`sin^-1(sin2)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`cosec^-1(cosec (3pi)/4)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate the following:
`sin(tan^-1 24/7)`
Solve: `cos(sin^-1x)=1/6`
`4sin^-1x=pi-cos^-1x`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
`tan^-1 2/3=1/2tan^-1 12/5`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
Write the value of sin (cot−1 x).
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.