हिंदी

Sum the Following Series: `Tan^-1 1/3+Tan^-1 2/9+Tan^-1 4/33+...+Tan^-1 (2^(N-1))/(1+2^(2n-1))` - Mathematics

Advertisements
Advertisements

प्रश्न

Sum the following series:

`tan^-1  1/3+tan^-1  2/9+tan^-1  4/33+...+tan^-1  (2^(n-1))/(1+2^(2n-1))`

उत्तर

`tan^-1  1/3+tan^-1  2/9+tan^-1  4/33+...+tan^-1  (2^(n-1))/(1+2^(2n-1))`

⇒ `tan^-1((2-1)/(1+2xx1))+tan^-1((4-2)/(1+4xx2))+tan^-1((8+4)/(1+8xx4))+...+tan^-1((2^n-2^n-1)/(1+2^n.2^(n-1))`

⇒ `(tan^-1  2-tan^-1  1)+(tan^-1  4-tan^-1  2)+(tan^-1  8-tan^-1  4)+...+(tan^-1  2^(n-1)-tan^-1 2^(n-2))+(tan^-1 2^n-tan^-1  2(n-1))`

⇒ `tan^-1 2^n-tan^-1  1`

⇒ `tan^-1 2^n -pi/4`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.11 [पृष्ठ ८२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.11 | Q 4 | पृष्ठ ८२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

Find the domain of `f(x)=cos^-1x+cosx.`


`sin^-1(sin4)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Evaluate the following:

`cosec(cos^-1  3/5)`


Evaluate the following:

`cot(cos^-1  3/5)`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


`tan^-1x+2cot^-1x=(2x)/3`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×