Advertisements
Advertisements
प्रश्न
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
विकल्प
0
1
2
infinite
उत्तर
(c) 2
\[For, - \pi \leq x \leq \frac{- \pi}{2}\]
\[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x)\]
\[ \Rightarrow \sqrt{2} \left| \cos x \right| = \sqrt{2} \left( - \pi - x \right)\]
\[ \Rightarrow \sqrt{2} \left( - \cos x \right) = \sqrt{2} \left( - \pi - x \right)\]
\[ \Rightarrow \cos{x} = \pi + x \]
\[\text{ It does not satisfy for any value of x in the interval }\left( - \pi, \frac{- \pi}{2} \right)\]
\[For, \frac{- \pi}{2} \leq x \leq \frac{\pi}{2}\]
\[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x)\]
\[ \Rightarrow \sqrt{2} \left| \cos x \right| = \sqrt{2} \left( x \right)\]
\[ \Rightarrow \sqrt{2} \left( \cos x \right) = \sqrt{2} \left( x \right)\]
\[ \Rightarrow \cos{x} = x \]
\[\text{ It gives one value of x in the interval }\left( \frac{- \pi}{2}, \frac{\pi}{2} \right)\]
\[For, \frac{\pi}{2} \leq x \leq \pi\]
\[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x)\]
\[ \Rightarrow \sqrt{2} \left| \cos x \right| = \sqrt{2} \left( - \pi - x \right)\]
\[ \Rightarrow \sqrt{2} \left( - \cos x \right) = \sqrt{2} \left( \pi - x \right)\]
\[ \Rightarrow \cos{x} = - \pi + x \]
\[\text{ It gives one value of x in the interval } \left( \frac{\pi}{2}, \pi \right)\]
\[\therefore \sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x) \text {gives two real solutions in the interval }\left[ - \pi, \pi \right]\]
APPEARS IN
संबंधित प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
`sin^-1(sin (5pi)/6)`
`sin^-1(sin4)`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`tan^-1(tan1)`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`sin(tan^-1 24/7)`
Evaluate the following:
`cosec(cos^-1 3/5)`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`tan{cos^-1(-7/25)}`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
Solve the following equation for x:
tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
If \[\cos^{- 1} x > \sin^{- 1} x\], then
Find the domain of `sec^(-1)(3x-1)`.
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.
The value of sin `["cos"^-1 (7/25)]` is ____________.