हिंदी

The Number of Real Solutions of the Equation √ 1 + Cos 2 X = √ 2 Sin − 1 ( Sin X ) , − π ≤ X ≤ π (A) 0 (B) 1 (C) 2 (D) Infinite - Mathematics

Advertisements
Advertisements

प्रश्न

The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]

विकल्प

  • 0

  • 1

  • 2

  • infinite

MCQ

उत्तर

(c) 2

\[For, - \pi \leq x \leq \frac{- \pi}{2}\]
\[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x)\]
\[ \Rightarrow \sqrt{2} \left| \cos x \right| = \sqrt{2} \left( - \pi - x \right)\]
\[ \Rightarrow \sqrt{2} \left( - \cos x \right) = \sqrt{2} \left( - \pi - x \right)\]
\[ \Rightarrow \cos{x} = \pi + x \]
\[\text{ It does not satisfy for any value of x in the interval }\left( - \pi, \frac{- \pi}{2} \right)\]
\[For, \frac{- \pi}{2} \leq x \leq \frac{\pi}{2}\]
\[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x)\]
\[ \Rightarrow \sqrt{2} \left| \cos x \right| = \sqrt{2} \left( x \right)\]
\[ \Rightarrow \sqrt{2} \left( \cos x \right) = \sqrt{2} \left( x \right)\]
\[ \Rightarrow \cos{x} = x \]
\[\text{ It gives one value of x in the interval }\left( \frac{- \pi}{2}, \frac{\pi}{2} \right)\]
\[For, \frac{\pi}{2} \leq x \leq \pi\]
\[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x)\]
\[ \Rightarrow \sqrt{2} \left| \cos x \right| = \sqrt{2} \left( - \pi - x \right)\]
\[ \Rightarrow \sqrt{2} \left( - \cos x \right) = \sqrt{2} \left( \pi - x \right)\]
\[ \Rightarrow \cos{x} = - \pi + x \]
\[\text{ It gives one value of x in the interval } \left( \frac{\pi}{2}, \pi \right)\]
\[\therefore \sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x) \text {gives two real solutions in the interval }\left[ - \pi, \pi \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 10 | पृष्ठ १२०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


Solve the equation for x:sin1x+sin1(1x)=cos1x


If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


Find the domain of definition of `f(x)=cos^-1(x^2-4)`


`sin^-1(sin  (5pi)/6)`


`sin^-1(sin4)`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`sin(tan^-1  24/7)`


Evaluate the following:

`cosec(cos^-1  3/5)`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Evaluate:

`sec{cot^-1(-5/12)}`


Evaluate:

`tan{cos^-1(-7/25)}`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


Solve the following equation for x:

tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Show that `2tan^-1x+sin^-1  (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


Find the domain of `sec^(-1)(3x-1)`.


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×