हिंदी

Find the Value of the Following: `Cos(Sec^-1x+Cosec^-1x),` | X | ≥ 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1

योग

उत्तर

We have

`cos(sec^-1x+\text(cosec)^-1x)`

`=cos  pi/2`    `[becausesec^-1x+\text(cosec)^-1x=pi/2]`

= 0

 


`thereforecos(sec^-1x+\text(cosec)^-1x)=0`  , ∣ x ∣ ≥1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 7.2 | पृष्ठ ११६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

`sin^-1(sin  (13pi)/7)`


`sin^-1(sin4)`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`cosec(cos^-1  3/5)`


Evaluate the following:

`cos(tan^-1  24/7)`


Evaluate:

`cos{sin^-1(-7/25)}`


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


`sin^-1x=pi/6+cos^-1x`


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


`tan^-1  2/3=1/2tan^-1  12/5`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\]  is equal to

 

 

The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


If tan−1 3 + tan−1 x = tan−1 8, then x =


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×