Advertisements
Advertisements
प्रश्न
`sin^-1x=pi/6+cos^-1x`
उत्तर
`sin^-1x=pi/6+cos^-1x`
⇒ `sin^-1x=pi/6+pi/2-sin^-1x` `[becausecos^-1x=pi/2-sin^-1x]`
⇒ `2sin^-1x=(2pi)/3`
⇒ `sin^-1x=pi/3`
⇒ `sin^-1x=pi/3`
⇒ `x=sin pi/3=sqrt3/2`
APPEARS IN
संबंधित प्रश्न
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
`sin^-1(sin (5pi)/6)`
`sin^-1(sin2)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Evaluate:
`cot(tan^-1a+cot^-1a)`
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
`sin(sin^-1 1/5+cos^-1x)=1`
`4sin^-1x=pi-cos^-1x`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Solve the following equation for x:
tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
Find the domain of `sec^(-1)(3x-1)`.
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.